Holy glycosylation! New 'bat signal' flags distressed cells in childhood genetic diseases

June 12, 2012, Federation of American Societies for Experimental Biology

Just as Gotham City uses the Bat Signal to call for Batman's aid, a new tool developed by scientists from the Sanford-Burnham Medical Research Institute in La Jolla, California, should serve as the cellular equivalent for children with glycosylation disorders, sometimes called "CDG syndromes." In a new report appearing online in The FASEB Journal, scientists describe how they used a green fluorescent protein to identify the presence of genes—known and unknown—associated with a wide variety of glycosylation-related diseases. By being able to identify exactly which genes are defective, researchers can develop treatments and therapies to correct the root causes of these diseases rather than merely treating the symptoms.

Glycosylation is an enzymatic process that coats proteins, lipids or other organic molecules with sugar molecules. It helps cells "stick" together, and proteins fold and work properly, among other things. When this process does not function correctly, it causes diseases involving intellectual disability, digestive problems, seizures and low blood sugar.

"We hope this glowing protein will help light the path for the discovery of new that cause genetic disorders in children," said Hudson Freeze, Ph.D., a senior researcher involved in the work from the Genetic Disease Program at Sanford-Burnham Medical Research Institute in La Jolla, California. "It's not Harry Potter's magic wand, but we hope it will offer a way to test for new therapies in these kids. They're counting on us."

To make this advance, Freeze and colleagues engineered cells from children with glycosylation disorders so the cells would glow to indicate when there was a glycosylation problem related to a defective or missing gene. Once the problematic, glowing cells were "rescued" by inserting a healthy gene into the cell or correcting a defective gene's function, the cells stopped glowing. This new tool may be used in high-throughput screening to identify therapeutic molecules that improve glycosylation in defective cells, including stem cells. In addition, this advance may serve as the foundation for a new diagnostic tool for patients.

"These glowing proteins serve as a hotline between distressed cells and researchers hoping to restore their normal function," said Gerald Weissmann, M.D., Editor-in-Chief of The . "Knowing when and where there are with flawed glycosylation pathways should allow researchers to rapidly screen for compounds that may have therapeutic potential."

Explore further: Whole exome sequencing identifies cause of metabolic disease

More information: Marie-Estelle Losfeld, Francesca Soncin, Bobby G. Ng, Ilyas Singec, and Hudson H. Freeze. A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy. FASEB J. doi:10.1096/fj.12-211656

Related Stories

Whole exome sequencing identifies cause of metabolic disease

February 3, 2012
Sequencing a patient's entire genome to discover the source of his or her disease is not routine – yet. But geneticists are getting close.

It takes a sugar to catch a sugar

December 2, 2011
After every meal, the hormone insulin is released into the bloodstream, issuing instructions to target cells to begin taking up excess sugar. In some situations, however, cells stop responding to these signals; and this insulin-resistant ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.