Husband-wife team set out to improve breast cancer exams

June 20, 2012
Lorraine G. Olson, professor of mechanical engineering, and her husband, Robert Throne, head of the Department of Electrical and Computer Engineering. They are working together to change the way breast cancer is diagnosed. Credit: Rose-Hulman Institute of Technology in Terre Haute, Indiana

One in eight women in the United States will develop breast cancer over the course of her lifetime.

Lorraine G. Olson, professor of mechanical engineering at the Rose-Hulman Institute of Technology in Terre Haute, Indiana, was diagnosed in 2005 at the age of 45. Fortunately, her was caught early from a routine mammogram, but like many women, she was prodded by her physician to do the exam.

"To be honest, I put off my mammogram for months before my primary care physician made an appointment for me," Olson said. "The standard mammogram hurts a fair amount and I didn't think I'd have a problem since I was pretty young."

involve placing one breast at a time between two plates that compress and spread the breast tissue, which causes discomfort for most women.

As fate may have it, Olson's husband, Robert Throne, was diagnosed with in 2005 a few months after Olson's diagnosis. Throne is the head of the Department of Electrical and Computer Engineering at Rose-Hulman.

Few are in the position to change the way cancer is diagnosed, but Olson and Throne are doing just that for breast cancer. Together, they have created math models to improve early detection efforts. The research could be instrumental in the development of a new that will mimic manual breast palpations, enabling doctors to record accurate data about the underlying tissue.

"The device won't replace mammography," Olson said, but the less could be an affordable, effective tool. For nearly six years, this has been the focal point of the husband-wife research team.

"Cancerous tissues are as much as ten times stiffer than healthy tissues," Olson said. "Manual breast exams are looking at tissue stiffness, but, currently, there isn't a good way to record the results."

To better understand the concept of stiffness, Olson compares it with cheese. A three ounce block of cream cheese and a three ounce block of cheddar cheese are about the same size and density (weight/volume). However, when you probe the block of cheddar cheese it doesn't change shape nearly as much as the cream cheese—that's because cheddar is much stiffer.

Olson and Throne want their system to automate and refine the manual breast exam process. "Step one is to find a way to record accurate results," Olson said. "Step two is to use mathematical techniques to make a picture of what's going on inside the breast tissue in terms of stiffness."

Mammograms use X-rays, which are only sensitive to tissue density, not stiffness.

The new exam would look something like this: A woman lies on an exam table and a ring is placed around her breast; a robotic arm then performs the breast exam and measures how much force it takes and how much the tissue moves.

"This is how we imagine it's going to work, but for now we're just doing computer simulations of the process," Olson says.

To run these simulations quickly and to generate accurate results, Olson is applying the computational power of the resources at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.

"None of this would have been possible without the resources we used through TACC and XSEDE," Olson said, referring to the National Science Foundation-funded cyberinfrastructure that provides free advanced computing resources and time to researchers across the country. "By using supercomputers I can parallelize the job and finish simulations in minutes."

For the breast cancer research, speed of execution is very important, as a typical genetic algorithm must be iterated many times to produce a usable result for a complex problem. Olson is working with 2D and 3D algorithms to create a picture that represents the variations in tissue stiffness.

"It's quite promising," Olson said. "You can put a tumor about one centimeter across near the middle of the , and then run this algorithm—it will tell you that there's a one centimeter tumor in the same location."

During the summer of 2012, Olson and her husband will try to speed up their algorithm's ability to solve problems by a factor of two. They also aim to improve the "fitness function" on their measured data to determine the best way to perform the tests at a clinical level. A fitness function summarizes, as a single figure of merit, how close a given design solution is to achieving the set aims.

In the near future, Olson and Throne plan to move the research from computer simulations to actual experiments and clinical use. The husband-wife team hopes that this new test will become an inexpensive, routine exam performed painlessly and harmlessly as part of an annual checkup even for relatively young women. This would greatly aid in early detection when breast cancer is most treatable.

"My daughter is 21 now," Olson said, "and I need to hurry up with the research because she wants it ready."

Explore further: The role of fat in assessing breast cancer risk

Related Stories

The role of fat in assessing breast cancer risk

October 26, 2011
It is known that a high proportion of dense breast tissue, as seen with a mammogram, is associated with a high risk of breast cancer. But the role of non-dense fat tissue in the breast is less clear. New research published ...

Study: Preoperative estrogen-blocking therapy may preempt need for mastectomy

March 23, 2012
Preoperative treatment with aromatase inhibitors increases the likelihood that postmenopausal women with estrogen receptor-positive breast cancer will be able to have breast-conserving surgery rather than a mastectomy, according ...

Researcher finds method behind magic

May 10, 2012
(Medical Xpress) -- A magician will have the upper hand because he knows how his trick works. But, according to Jay Olson, the magician might not know why.

Hospital gives first tomosynthesis mammograms in region this week

December 7, 2011
There is still a one in eight lifetime risk that a woman will develop breast cancer, and the best tool against the disease remains early detection. Now, Women & infants Hospital of Rhode Island has taken the breast cancer ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.