New method generates cardiac muscle patches from stem cells

June 19, 2012

A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated is displayed on the cover of the current issue of , a publication of the .

For those suffering from common, but deadly, heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for , however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Furthermore, the team designed a fluorescent imaging platform using light emitting diode (LED) illumination to measure the electrical activity of the cells.

"Action potential and calcium wave impulse propogation trigger each normal heart beat, so it is imperative to record each parameter in bioengineered human cardiac patches," Herron says.

Authors of the study note that the velocity of the engineered cardiac cells, while faster than previous reports, it is still slower than the velocity observed in the beating adult heart.

Still the velocity is comparable to commonly used rodent cells, and authors suggest human cardiac patches could be used rather than rodent systems for research purposes.

The new method can be readily applied in most cardiac research laboratories and opens the door for the use of cardiac stem cell patches in disease research, testing of new drug treatments and therapies to repair damaged heart muscle.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

More information: "Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell–Derived Cardiac Myocyte Monolayers," Circulation Research, June 8, 2012; 110: 1556-1.

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011
Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Newly discovered heart stem cells make muscle and bone

December 1, 2011
Researchers have identified a new and relatively abundant pool of stem cells in the heart. The findings in the December issue of Cell Stem Cell, a Cell Press publication, show that these heart cells have the capacity for ...

Helping the heart help itself: Research points to new use for stem cells

April 8, 2011
(PhysOrg.com) -- Human trials of stem cell therapy for post-heart attack patients have raised as many questions as they have answered -- because while the patients have tended to show some improvement in heart function, the ...

Recommended for you

Low-salt and heart-healthy dash diet as effective as drugs for some adults with high blood pressure

November 22, 2017
A study of more than 400 adults with prehypertension, or stage 1 high blood pressure, found that combining a low-salt diet with the heart-healthy DASH diet substantially lowers systolic blood pressure—the top number in ...

Stroke patients may have more time to get treatment, study finds

November 22, 2017
Patients and doctors long have relied on a simple rule of thumb for seeking care after an ischemic stroke: "Time is brain."

Cases of heart failure continue to rise; poorest people worst affected

November 22, 2017
The number of people being diagnosed with heart failure in the UK continues to rise as a result of demographic changes common to many developed countries, new research by The George Institute for Global Health at the University ...

Some cancer therapies may provide a new way to treat high blood pressure

November 20, 2017
Drugs designed to halt cancer growth may offer a new way to control high blood pressure (hypertension), say Georgetown University Medical Center investigators. The finding could offer a real advance in hypertension treatment ...

Could this protein protect people against coronary artery disease?

November 17, 2017
The buildup of plaque in the heart's arteries is an unfortunate part of aging. But by studying the genetic makeup of people who maintain clear arteries into old age, researchers led by UNC's Jonathan Schisler, PhD, have identified ...

Raising 'good' cholesterol fails to protect against heart disease

November 16, 2017
Raising so-called 'good' cholesterol by blocking a key protein involved in its metabolism does not protect against heart disease or stroke, according to a large genetic study of 150,000 Chinese adults published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.