Promising tool to combat cachexia-induced muscle wasting discovered

June 13, 2012
Researchers from McGill block onset of cachexia in animal models

(Medical Xpress) -- Cachexia, a syndrome characterized by rapid weight loss and muscle deterioration, is a major cause of death among patients suffering from diseases like cancer, AIDS and chronic infection. In fact, 30 per cent of cancer-related deaths are the result of cachexia-induced muscle loss rather than the primary malignancy. And while scientists are making strides in gaining a better understanding of this deadly condition, no effective anti-cachectic therapies exist to date. However, a newly published study by McGill University researchers shows that a low dose of Pateamine A (PatA) is effective at preventing cancer-induced muscle wasting – findings that could someday point to the development of cachexia-fighting drugs.

“To this day, when patients are diagnosed with cachexia, they’re sent to palliative care. Their illness is no longer treatable. They start losing muscle, including that which is in the lungs and they eventually die by asphyxia,” explained Dr. Imed Gallouzi, the paper’s senior author and Associate Professor in McGill’s Dept. of Biochemistry and researcher at the Goodman Research Centre. “It’s not that there are ineffective drugs out there, it’s that there are no approved drugs to treat this condition right now.”

Recently, compounds like PatA, a natural derivative of marine sponge known to interfere with protein production inside the cell and Episilvestrol (Epi), a plant compound, have been found to block tumor growth. Since tumors and inflammation are conditions that lead to muscle wasting, Gallouzi and his team tested the effect of different doses of PatA and Epi as potential anti-cachetic agents.

“We observed that a low dose of PatA blocks the onset of muscle wasting in two animal models by blocking the expression of factors that promote cachexia,” said Gallouzi. “PatA was originally identified as an inhibitor of the early steps that lead to protein synthesis inside the cell. As such, however, PatA can be toxic. Surprisingly, when we used this compound at a lower dose, we observed that it prevents cachexia-induced , by specifically interfering with the expression of promoters of muscle loss. Now we need to confirm that PatA, and its family of compounds, is effective in blocking muscle wasting in other animal models.”

The findings were published this week in the journal Nature Communications.

Explore further: Heavy lifting for cancer research

Related Stories

Heavy lifting for cancer research

February 9, 2012
Many patients with advanced cancer suffer from cachexia, a condition also called body-wasting or wasting syndrome, which causes significant weight loss, extreme fatigue and reduces quality of life.

No workout? No worries: Scientists prevent muscle loss in mice, despite disease and inactivity

February 29, 2012
If you want big muscles without working out, there's hope. In the March 2012 print issue of the FASEB Journal, scientists from the University of Florida report that a family of protein transcription factors, called "Forkhead ...

Recommended for you

How ketogenic diets curb inflammation

September 25, 2017
Ketogenic diets – extreme low-carbohydrate, high-fat regimens that have long been known to benefit epilepsy and other neurological illnesses – may work by lowering inflammation in the brain, according to new research ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.