New research yields insights into Parkinson's disease

June 4, 2012

Researchers at the University of Toronto Scarborough (UTSC) used an innovative technique to examine chemical interactions that are implicated in Parkinson's Disease.

The work details how a protein called alpha-synuclein interacting with the brain can lead to protein misfolding and .

Parkinson's Disease is a neurodegenerative disease which results in loss of motor control and cognitive function. Although the cause isn't known precisely, the disease involves the death of that produce dopamine, a chemical important in neuronal signaling. The disease also involves a protein called alpha-synuclein which aggregates in the neurons of people with the disease.

Kagan Kerman, a chemist in the Department of Physical and Environmental Sciences, and Ian R. Brown, a neuroscientist who founded UTSC's Centre for the Neurobiology of Stress in the Department of Biological Sciences, looked at the way dopamine interacts with alpha-synuclein to form aggregates that may be toxic to neurons.

"This is very fundamental," says Kagan Kerman. "It gives us a new point of view of the misfolding proteins and how they are affected by dopamine."

These sorts of interactions are often studied using microscopy. But the UTSC researchers decided to use an electroanalytic technique called voltammetry. By studying tiny changes in electric current as dopamine and alpha-synuclein interacted they were able to determine details about the early phases of the interaction.

Using the technique, they were able to detail how changes in and ionic strength of the solution affected the interaction. They found that at higher pH levels and higher ionic strengths, dopamine interacted much more strongly with alpha-synuclein, forming aggregates more quickly.

The results could have implications for understanding and treating the disease. Normally dopamine is contained in structures called vesicles, in which pH levels are low and dopamine is unlikely to interact with alpha-synuclein. Outside of the vesicles dopamine encounters higher pH levels and, according to the new research, is much more likely to interact to create aggregates.

The analysis was done using chemicals deposited onto screen-printed electrodes only 12.5 mm by 4 mm. The electrodes were manufactured at Osaka University, where Kerman completed his PhD work. Because they are so small, the electrodes allowed analysis to be done on tiny samples.

The technique is a potentially quicker and cheaper way to study , and could be automated to screen drugs that might treat the disease, says Brown.

The research was published in Chemical Neuroscience, published by the American Chemical Society.

Explore further: SUMO defeats protein aggregates that typify Parkinson's disease

Related Stories

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

Recommended for you

Critical toxic species behind Parkinson's disease is glimpsed at work for the first time

December 14, 2017
Researchers have glimpsed how the toxic protein clusters that are associated with Parkinson's Disease disrupt the membranes of healthy brain cells, creating defects in the cell walls and eventually causing a series of events ...

Tapeworm drug could lead the fight against Parkinson's disease

December 12, 2017
Researchers at Cardiff University, in collaboration with the University of Dundee, have identified a drug molecule within a medicine used to treat tapeworm infections which could lead to new treatments for patients with Parkinson's ...

High-intensity exercise delays Parkinson's progression

December 11, 2017
High-intensity exercise three times a week is safe for individuals with early-stage Parkinson's disease and decreases worsening of motor symptoms, according to a new phase 2, multi-site trial led by Northwestern Medicine ...

Changes in diet may improve life expectancy in Parkinson's patients

November 24, 2017
New research from the University of Aberdeen shows that weight loss in people with Parkinson's disease leads to decreased life expectancy, increased risk of dementia and more dependency on care.

Good cells gone bad: Scientists discover PINK-SNO

November 21, 2017
A new study from The Scripps Research Institute (TSRI) is the first to show precisely how a process in nerve cells called the S-nitrosylation (SNO) reaction—which can be caused by aging, pesticides and pollution—may contribute ...

Genetic defects in the cell's 'waste disposal system' linked to Parkinson's disease

November 14, 2017
An international study has shed new light on the genetic factors associated with Parkinson's disease, pointing at a group of lysosomal storage disorder genes as potential major contributors to the onset and progression of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.