Electrical brain stimulation can alleviate swallowing disorders after stroke

July 2, 2012

After stroke, patients often suffer from dysphagia, a swallowing disorder that results in greater healthcare costs and higher rates of complications such as dehydration, malnutrition, and pneumonia. In a new study published in the July issue of Restorative Neurology and Neuroscience, researchers have found that transcranial direct current stimulation (tDCS), which applies weak electrical currents to the affected area of the brain, can enhance the outcome of swallowing therapy for post-stroke dysphagia.

"Our demonstrated that ten daily sessions of tDCS over the affected esophageal of the brain hemisphere affected by the stroke, combined with swallowing training, improved post-stroke . We observed long-lasting effects of anodal tDCS over three months," reports lead investigator Nam-Jong Paik, MD, PhD, of the Department of , Seoul National University College of Medicine, Seoul, South Korea.

Sixteen patients with acute post-stroke dysphagia were enrolled in the trial. They showed signs of swallowing difficulties such as reduced , coughing and choking during eating, and palsy. Patients underwent ten 30-minute sessions of swallowing therapy and were randomly assigned to a treatment or control group. Both groups were fitted with an electrode on the scalp, on the side of the brain affected by the stroke, and in the region associated with swallowing. For the first 20 minutes of their sessions, tDCS was administered to the treatment group and then swallowing training alone continued for the remaining 10 minutes. In the control group, the direct current was tapered down and turned off after thirty seconds. Outcomes were measured before the experiment, just after the experiment, and again three months after the experiment. A patient from each group underwent a at before and just after the treatment to view the effect of the treatment on metabolism.

All patients underwent interventions without any discomfort or fatigue. There were no significant differences in age, sex, stroke lesion site, or extent of brain damage. Evaluation just after the conclusion of the sessions found that dysphagia improved for all patients, without much difference between the two groups. However, at the three month follow-up, the treatment group showed significantly greater improvement than the control group.

In the PET study, there were significant differences in cerebral metabolism between the first PET scan and the second PET scan in the patient who had received tDCS. Increased glucose metabolism was observed in the unaffected hemisphere, although tDCS was only applied to the affected hemisphere, indicating that tDCS might activate a large area of the cortical network engaged in swallowing recovery rather than just the areas stimulated under the electrode.

"The results indicate that tDCS can enhance the outcome of swallowing therapy in post-stroke dysphagia," notes Dr. Paik. "As is always the case in exploratory research, further investigation involving a greater number of patients is needed to confirm our results. It will be important to determine the optimal intensity and duration of the treatment to maximize the long-term benefits."

Explore further: Swallowing exercises linked with short-term improvement among patients with head and neck cancer

Related Stories

Swallowing exercises linked with short-term improvement among patients with head and neck cancer

April 16, 2012
Among patients undergoing chemoradiation therapy (CRT) for head and neck cancer, performing targeted swallowing exercises following CRT is associated with short-term improvement in swallowing function; however, there were ...

Recommended for you

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.