Key mutations discovered for medulloblastoma -- most common childhood brain cancer

July 22, 2012

Researchers at Dana-Farber/Children's Hospital Cancer Center (DF/CHCC) and several collaborating institutions have linked mutations in specific genes to each of the four recognized subtypes of medulloblastoma, the most common malignant brain tumor of children. The discovery, reported July in the journal Nature, provides doctors with potential biomarkers for guiding and individualizing treatment and reveals prospective therapeutic opportunities for countering this devastating malignancy.

The study was conducted by a research team led by Scott Pomeroy, MD, PhD, Neurologist-in-Chief at Boston Children's Hospital and a neuro-oncologist at DF/CHCC; Yoon-Jae Cho, MD, formerly of Boston Children's and now at Stanford University School of Medicine; and Matthew Meyerson, MD, PhD, of Dana-Farber Cancer Institute and the Broad Institute.

Medulloblastomas occur in the cerebellum (the part of the brain that controls balance and other complex ) and are treated with a combination of surgery, radiation and chemotherapy. Though overall survival hovers around 70 percent, most survivors are unable to live independently due to the lasting effects of both tumor and treatment.

Doctors have historically classified medulloblastoma patients as either standard or high risk based on biopsy results, but have long suspected that what we call medulloblastoma could actually be several different diseases. Over the last two years, studies by researchers including Pomeroy and his colleagues have bolstered this view by dividing medulloblastoma into four molecular subtypes based on gene expression profiles and copy number variations. Each subtype has a distinct survival rate, ranging from 20 to 90 percent.

"Not only do we now know how to stratify medulloblastomas genomically, we have a firm grasp of what gene mutations drive each molecular subtype," said Pomeroy, who has spent 20 years trying to understand the of the tumor's variability. "For the first time, we'll be able to classify and treat medulloblastoma based on molecular typing, providing the best therapy with the fewest long-term consequences."

In this new study, Pomeroy and his team used next generation sequencing technologies to read the full complement of protein-coding genes (also called the exome) of tumors from 92 patients. Within these tumors the team discovered that somatic (that is, non-heritable) mutations occur at very low frequency, one-tenth to one-hundredth of that seen in cancers of adults. Specific gene mutations clustered neatly into the four molecular subtypes, although the majority of genes (88%) were mutated only once in the entire tumor collection. Only 12 genes were mutated in more than one tumor, illustrating medulloblastoma's genetic heterogeneity.

Functionally, the mutated genes fell into two broad categories: genes like Shh and Wnt that play direct roles in molecular pathways controlling cell growth, and genes like DDX3X and GPS2 that play more of a coaching role, modulating the activity of other genes.

Taken as a whole, the study's results confirm the view of medulloblastoma as a family of tumors driven by disruptions in just a few common mechanisms. However, the form those disruptions take—the actual mutations or genomic changes—can vary from tumor to tumor.

"The results reflect two emerging genetic themes seen throughout childhood tumors," Pomeroy noted. "First, very low mutation rates, much lower than those seen in adult tumors, and second, the importance of mutations in genes that regulate the function of the cell's growth pathways but which aren't direct components of those pathways."

Some of the study's findings could be translated to patients relatively quickly. For instance, with the main mutations of each subtype in hand, it should soon be possible to rapidly classify individual medulloblastoma patients' tumors and tailor treatment appropriately based on each subtype's known prognosis. In addition, clinical trials of Shh-blocking drugs already under investigation for other cancers could begin within the next couple of years in patients with the medulloblastoma subtype driven by Shh mutations.

Pomeroy credits the high level of cooperation between groups at different institutions studying medulloblastoma as a significant factor in the progress made over the last few years. "Because of our collective efforts, medulloblastoma has gone from an important but obscure tumor to one that we understand better than many other cancers at the molecular level."

Explore further: Gene sequencing project identifies potential drug targets in common childhood brain tumor

Related Stories

Gene sequencing project identifies potential drug targets in common childhood brain tumor

June 20, 2012
Researchers studying the genetic roots of the most common malignant childhood brain tumor have discovered missteps in three of the four subtypes of the cancer that involve genes already targeted for drug development.

Could targeting a virus treat a common pediatric brain tumor?

September 26, 2011
Medulloblastomas are the most common cancerous (malignant) brain tumors in children. Although survival rates have improved over the years, medulloblastoma remains associated with substantial mortality, and long-term survivors ...

New model of childhood brain cancer establishes first step to personalized treatment

February 13, 2012
Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) developed a new mouse model for studying a devastating childhood brain cancer called medulloblastoma. The animal model mimics the deadliest of four ...

Recommended for you

Lung cancer triggers pulmonary hypertension

November 17, 2017
Shortness of breath and respiratory distress often increase the suffering of advanced-stage lung cancer patients. These symptoms can be triggered by pulmonary hypertension, as scientists at the Max Planck Institute for Heart ...

Researchers discover an Achilles heel in a lethal leukemia

November 16, 2017
Researchers have discovered how a linkage between two proteins in acute myeloid leukemia enables cancer cells to resist chemotherapy and showed that disrupting the linkage could render the cells vulnerable to treatment. St. ...

Computer program finds new uses for old drugs

November 16, 2017
Researchers at the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine have developed a computer program to find new indications for old drugs. The computer program, called DrugPredict, ...

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

November 16, 2017
Researchers at CeMM and the Medical University of Vienna presented a preliminary report in The Lancet Hematology on the clinical impact of an integrated ex vivo approach called pharmacoscopy. The procedures measure single-cell ...

Wider sampling of tumor tissues may guide drug choice, improve outcomes

November 15, 2017
A new study focused on describing genetic variations within a primary tumor, differences between the primary and a metastatic branch of that tumor, and additional diversity found in tumor DNA in the blood stream could help ...

A new strategy for prevention of liver cancer development

November 14, 2017
Primary liver cancer is now the second leading cause of cancer-related death worldwide, and its incidences and mortality are increasing rapidly in the United Stated. In late stages of the malignancy, there are no effective ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.