Key mutations discovered for medulloblastoma -- most common childhood brain cancer

July 22, 2012

Researchers at Dana-Farber/Children's Hospital Cancer Center (DF/CHCC) and several collaborating institutions have linked mutations in specific genes to each of the four recognized subtypes of medulloblastoma, the most common malignant brain tumor of children. The discovery, reported July in the journal Nature, provides doctors with potential biomarkers for guiding and individualizing treatment and reveals prospective therapeutic opportunities for countering this devastating malignancy.

The study was conducted by a research team led by Scott Pomeroy, MD, PhD, Neurologist-in-Chief at Boston Children's Hospital and a neuro-oncologist at DF/CHCC; Yoon-Jae Cho, MD, formerly of Boston Children's and now at Stanford University School of Medicine; and Matthew Meyerson, MD, PhD, of Dana-Farber Cancer Institute and the Broad Institute.

Medulloblastomas occur in the cerebellum (the part of the brain that controls balance and other complex ) and are treated with a combination of surgery, radiation and chemotherapy. Though overall survival hovers around 70 percent, most survivors are unable to live independently due to the lasting effects of both tumor and treatment.

Doctors have historically classified medulloblastoma patients as either standard or high risk based on biopsy results, but have long suspected that what we call medulloblastoma could actually be several different diseases. Over the last two years, studies by researchers including Pomeroy and his colleagues have bolstered this view by dividing medulloblastoma into four molecular subtypes based on gene expression profiles and copy number variations. Each subtype has a distinct survival rate, ranging from 20 to 90 percent.

"Not only do we now know how to stratify medulloblastomas genomically, we have a firm grasp of what gene mutations drive each molecular subtype," said Pomeroy, who has spent 20 years trying to understand the of the tumor's variability. "For the first time, we'll be able to classify and treat medulloblastoma based on molecular typing, providing the best therapy with the fewest long-term consequences."

In this new study, Pomeroy and his team used next generation sequencing technologies to read the full complement of protein-coding genes (also called the exome) of tumors from 92 patients. Within these tumors the team discovered that somatic (that is, non-heritable) mutations occur at very low frequency, one-tenth to one-hundredth of that seen in cancers of adults. Specific gene mutations clustered neatly into the four molecular subtypes, although the majority of genes (88%) were mutated only once in the entire tumor collection. Only 12 genes were mutated in more than one tumor, illustrating medulloblastoma's genetic heterogeneity.

Functionally, the mutated genes fell into two broad categories: genes like Shh and Wnt that play direct roles in molecular pathways controlling cell growth, and genes like DDX3X and GPS2 that play more of a coaching role, modulating the activity of other genes.

Taken as a whole, the study's results confirm the view of medulloblastoma as a family of tumors driven by disruptions in just a few common mechanisms. However, the form those disruptions take—the actual mutations or genomic changes—can vary from tumor to tumor.

"The results reflect two emerging genetic themes seen throughout childhood tumors," Pomeroy noted. "First, very low mutation rates, much lower than those seen in adult tumors, and second, the importance of mutations in genes that regulate the function of the cell's growth pathways but which aren't direct components of those pathways."

Some of the study's findings could be translated to patients relatively quickly. For instance, with the main mutations of each subtype in hand, it should soon be possible to rapidly classify individual medulloblastoma patients' tumors and tailor treatment appropriately based on each subtype's known prognosis. In addition, clinical trials of Shh-blocking drugs already under investigation for other cancers could begin within the next couple of years in patients with the medulloblastoma subtype driven by Shh mutations.

Pomeroy credits the high level of cooperation between groups at different institutions studying medulloblastoma as a significant factor in the progress made over the last few years. "Because of our collective efforts, medulloblastoma has gone from an important but obscure tumor to one that we understand better than many other cancers at the molecular level."

Explore further: Gene sequencing project identifies potential drug targets in common childhood brain tumor

Related Stories

Gene sequencing project identifies potential drug targets in common childhood brain tumor

June 20, 2012
Researchers studying the genetic roots of the most common malignant childhood brain tumor have discovered missteps in three of the four subtypes of the cancer that involve genes already targeted for drug development.

Could targeting a virus treat a common pediatric brain tumor?

September 26, 2011
Medulloblastomas are the most common cancerous (malignant) brain tumors in children. Although survival rates have improved over the years, medulloblastoma remains associated with substantial mortality, and long-term survivors ...

New model of childhood brain cancer establishes first step to personalized treatment

February 13, 2012
Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) developed a new mouse model for studying a devastating childhood brain cancer called medulloblastoma. The animal model mimics the deadliest of four ...

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.