Newly discovered scaffold supports turning pain off

July 27, 2012
Newly discovered scaffold supports turning pain off
Preso1 (green) and mGluR5 (red) appear in the same location inside a neuron.

(Medical Xpress) -- Johns Hopkins scientists have discovered a "scaffolding" protein that holds together multiple elements in a complex system responsible for regulating pain, mental illnesses and other complex neurological problems.

The finding, published in the May 6 issue of Nature Neuroscience, could give researchers a new target for drugs to treat these often-intractable conditions.

The discovery, detailed in a study led by neuroscience professor Paul Worley, M.D., of the Johns Hopkins University School of Medicine, focuses on a family of proteins called group 1 metabotropic glutamate receptors (mGluRs) that lie on the surfaces of nerve cells. When these receptors lock in glutamate, a chemical that neurons use to communicate, it encourages neurons to fire.

Without a way to turn off these receptors, neurons would remain active indefinitely, keeping pain and other responses going long after they're useful. Previous research suggested that these mGluRs need to bind to another protein called Homer to shut down, and that this binding is stronger after other molecules called protein kinases modify the receptors. However, Worley explains, thus far it's been unclear exactly how all these different players come together.

Seeking the mechanism behind this phenomenon, Worley and his colleagues started with a series of experiments to see what other proteins the mGluRs and Homer were binding with in rat brains. Their search turned up a third protein called Preso1, which bound to both mGluRs and Homer. A search in genetic databases shows that the gene responsible for making Preso1 is present in animals ranging from fruit flies to people, highlighting its importance in a wide variety of creatures.

To figure out what Preso1 does, the researchers performed another series of experiments to examine behavior of neurons that produced both mGluRs and Homer. They found that when these neurons also expressed Preso1, the mGluRs bound Homer more efficiently, suggesting that Preso1 might somehow increase modification by protein kinases.

Worley's team received another clue when they found that protein kinases also bind to Preso1.

Genetically modifying mice so that they don't make any Preso1, the researchers found that binding between mGluRs and Homer in these animals' neurons was greatly reduced compared to normal mice.

Additionally, when the researchers injected the modified mice with a chemical that causes pain and inflammation, the animals had a significantly greater and longer-lasting response compared to regular mice. A final experiment showed that neurons taken from the modified animals were significantly more responsive to the neurotransmitter glutamate. When the researchers added Preso1 to the cell cultures, this increased activity disappeared, suggesting that Preso1 is pivotal for mGluRs to signal properly.

Taken together, Worley explains, the findings suggest that Preso1 appears to gather all the important in this system -- Homer, protein kinases and mGluRs -- bringing them all together to coordinate the activation and deactivation of the mGluRs.

With Preso1 so pivotal for regulating group 1 mGluR activity, it could prove a useful new target for drugs to treat a variety of health problems in which these receptors are thought to play a role, including chronic pain, schizophrenia, Alzheimer's disease, and fragile X syndrome, Worley says.

"Because mGluRs play so many important roles in the brain for so many different mental and neurological health conditions, knowledge of their regulatory mechanisms is extremely important. But we really don't know how they work in great detail," he says. "You need to know all the players before you can understand the system. Here, we've identified an important player that no one had previously known had existed. Preso1 and Homer appear essential for desensitization of mGluR signaling, much like beta-adrenergic receptor kinase and arrestin are important for desensitization of adrenergic and opiate receptors."

Explore further: X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

Related Stories

X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

October 19, 2011
Scientists at Cold Spring Harbor Laboratory (CSHL) have solved part of a puzzle concerning the relationship between changes in the strength of synapses – the tiny gaps across which nerve cells in the brain communicate ...

Recommended for you

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

Researchers show how particular fear memories can be erased

August 17, 2017
Researchers at the University of California, Riverside have devised a method to selectively erase particular fear memories by weakening the connections between the nerve cells (neurons) involved in forming these memories.

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

Study uncovers specialized mouse neurons that play a unique role in pain

August 17, 2017
Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.