Retina transplantation improved by manipulating recipient retinal microenvironment

July 11, 2012

A research team in the United Kingdom has found that insulin-like growth factor (IGF1) impacts cell transplantation of photoreceptor precursors by manipulating the retinal recipient microenvironment, enabling better migration and integration of the cells into the adult mouse retina.

Their study is published in the current issue of Cell Transplantation (21:5), now freely available on-line.

"Photoreceptor death is an irreversible process and represents one of the largest causes of untreatable blindness in the developed world," said Dr. Rachael A. Pearson, study co-author and a member of the Department of Genetics, University College London Institute of Ophthalmology. "Stem cell replacement therapy offers a novel strategy for retinal repair, but since it is likely that a large number of cells would be needed to restore vision, enhancement of the process is needed."

In this study, the researchers used adeno-associated viral vectors (AAVs) to introduce three previously reported to play a role in photoreceptor development - IGF1, fibroblast growth factor (FGF2) and ciliary neurotrophic factor (CNTF) - into the retinas of . At three weeks post-transplantation, the number of integrated, differentiated present in the growth factor-treated retinas was compared to the untreated controls.

The researchers noted that all three growth factors are present during retinal development and all have been shown to affect photoreceptor differentiation. FGF2 has been shown to have varying effects based on the development stage of the cells to which it is applied. In addition, recent studies have shown that CNTF "acts transiently to suppress photoreceptor ."

"AAV mediated expression of IGF1 led to significantly increased levels of cell integration," wrote the researchers. "However, over expression of FGF2 had no significant effect on cell numbers and CNTF led to a significant decrease in cell integration."

They concluded that it was possible to manipulate the environment of the recipient retina for photoreceptor cell transplantation using , and that IGF1 provided a greater response.

"A potential consequence of IGF1 upregulation might be the improved or strengthened synaptic connectivity of the transplanted cells," said Dr. Pearson. "Newly born neurons, including photoreceptors, are vulnerable to pruning and apoptosis if appropriate synaptic connections with downstream targets are not formed and maintained."

The researchers noted that IGF1 has also been associated with the upregulation of brain-derived (BDNF), an important modulator of synaptic plasticity in the adult brain after injury and along with exercise-induced cognitive function.

"This important study demonstrates that, by modifying the environment, growth factors impact cell transplantation survival," said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "While this study focused on the retina, growth factors also are believed to alter and survival in other brain regions which means that these findings should lead to more research on other serious neurological disorders."

Explore further: Photoreceptor transplant restores vision in mice

More information: West, E. L.; Pearson, R. A.; Duran, Y.; Gonzalez-Cordero, A.; Maclaren, R. E.; Smith, A. J.; Sowden, J. C.; Ali, R. R. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant. 21(5):871-887; 2012. http://www.ingentaconnect.com/content/cog/ct/

Related Stories

Photoreceptor transplant restores vision in mice

April 18, 2012

Scientists funded by the Medical Research Council (MRC) have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

Stop signal for leukemia stem cells

August 23, 2011

There are numerous specialized growth factors that are responsible for cells of different tissues of our body to divide and differentiate when needed. These hormone-like factors bind to matching receptors on the surface of ...

Recommended for you

A pocket-sized retina camera, no dilating required

March 20, 2017

It's the part of the eye exam everyone hates: the pupil-dilating eye drops. The drops work by opening the pupil and preventing the iris from constricting in response to light and are often used for routine examination and ...

Scientists deploy CRISPR to preserve photoreceptors in mice

March 14, 2017

Silencing a gene called Nrl in mice prevents the loss of cells from degenerative diseases of the retina, according to a new study. The findings could lead to novel therapies for preventing vision loss from human diseases ...

New help for that bane of middle-age: blurry close-up vision

February 28, 2017

Squinting while texting? Always losing your reading glasses? An eye implant that takes about 10 minutes to put in place is the newest in a list of surgical repairs for the blurry close-up vision that is a bane of middle age. ...

Vitamin B3 prevents glaucoma in laboratory mice

February 16, 2017

In mice genetically predisposed to glaucoma, vitamin B3 added to drinking water is effective at preventing the disease, a research team led by Jackson Laboratory Professor and Howard Hughes Medical Investigator Simon W.M. ...

GARP2 accelerates retinal degeneration in a mouse model

February 15, 2017

In the retina of the eye, rod and cone cells turn light into electrical signals, the first step toward human vision. University of Alabama at Birmingham researchers are studying rod cell proteins GARP1 and GARP2 to learn ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.