Photoreceptor transplant restores vision in mice

April 18, 2012
Transplanted photoreceptor cells (green) can integrate and make functional connections in the adult retina. Credit: UCL/Robin Ali

Scientists funded by the Medical Research Council (MRC) have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

The research, published in Nature, suggests that transplanting – light-sensitive nerve cells that line the back of the eye – could form the basis of a new treatment to restore sight in people with degenerative eye diseases.

Scientists from UCL Institute of Ophthalmology injected cells from young healthy mice directly into the retinas of adult mice that lacked functional rod-photoreceptors. Loss of photoreceptors is the cause of blindness in many human eye diseases including age-related macular degeneration, retinitis pigmentosa and diabetes-related blindness.

Professor Robin Ali and his team at the UCL Institute of Ophthalmology have shown that transplanting photoreceptor cells into the retina of a mouse with night blindness can restore vision in dim light.

There are two types of photoreceptor in the eye – rods and cones. The cells transplanted were immature (or progenitor) rod-photoreceptor cells. Rod cells are especially important for seeing in the dark as they are extremely sensitive to even low levels of light.

After four to six weeks, the transplanted cells appeared to be functioning almost as well as normal rod-photoreceptor cells and had formed the connections needed to transmit visual information to the brain.

The researchers also tested the vision of the treated mice in a dimly lit maze. Those mice with newly transplanted rod cells were able to use a visual cue to quickly find a hidden platform in the maze whereas untreated mice were able to find the hidden platform only by chance after extensive exploration of the maze.

Professor Robin Ali at UCL Institute of Ophthalmology, who led the research, said:

Schematic of photoreceptor transplantation. Credit: UCL/Robin Ali

"We've shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We're hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.

"Although there are many more steps before this approach will be available to patients, it could lead to treatments for thousands of people who have lost their sight through degenerative eye disorders. The findings also pave the way for techniques to repair the central nervous system as they demonstrate the brain's amazing ability to connect with newly transplanted neurons."

Dr Rachael Pearson from UCL Institute of Ophthalmology and principal author, said:

"We are now finding ways to improve the efficiency of cone photoreceptor transplantation and to increase the effectiveness of transplantation in very degenerate retina. We will probably need to do both in order to develop effective treatments for patients."

Dr Rob Buckle, head of regenerative medicine at the MRC said:

"This is a landmark study that will inform future research across a wide range of fields including vision research, neuroscience and regenerative medicine. It provides clear evidence of functional recovery in the damaged eye through cell transplantation, providing great encouragement for the development of stem cell therapies to address the many debilitating eye conditions that affect millions worldwide."

The researchers demonstrated previously, in another study published in Nature, that it is possible to transplant photoreceptor cells into an adult mouse retina, provided the cells from the donor mouse are at a specific stage of development - when the retina is almost, but not fully, formed. In this study they optimised the rod transplantation procedure to increase the number of integrated into the recipient and so were able to restore vision.

Explore further: Sections of retinas regenerated and visual function increased with stem cells from skin

More information: DOI: 10.1038/nature10997

Related Stories

Sections of retinas regenerated and visual function increased with stem cells from skin

May 16, 2011
Scientists from Schepens Eye Research Institute are the first to regenerate large areas of damaged retinas and improve visual function using IPS cells (induced pluripotent stem cells) derived from skin. The results of their ...

Pig stem cell transplants: The key to future research into retina treatment

April 13, 2011
A team of American and Chinese scientists studying the role of stem cells in repairing damaged retina tissue have found that pigs represent an effective proxy species to research treatments for humans. The study, published ...

Algae may be the solution to blindness

April 15, 2011
(PhysOrg.com) -- The song about three blind mice may just be a song of the past according to new research presented by neuroscientist Alan Horsager from the Institute of Genetic Medicine at the University of Southern California ...

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.