Photoreceptor transplant restores vision in mice

April 18, 2012, University College London
Transplanted photoreceptor cells (green) can integrate and make functional connections in the adult retina. Credit: UCL/Robin Ali

Scientists funded by the Medical Research Council (MRC) have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

The research, published in Nature, suggests that transplanting – light-sensitive nerve cells that line the back of the eye – could form the basis of a new treatment to restore sight in people with degenerative eye diseases.

Scientists from UCL Institute of Ophthalmology injected cells from young healthy mice directly into the retinas of adult mice that lacked functional rod-photoreceptors. Loss of photoreceptors is the cause of blindness in many human eye diseases including age-related macular degeneration, retinitis pigmentosa and diabetes-related blindness.

Professor Robin Ali and his team at the UCL Institute of Ophthalmology have shown that transplanting photoreceptor cells into the retina of a mouse with night blindness can restore vision in dim light.

There are two types of photoreceptor in the eye – rods and cones. The cells transplanted were immature (or progenitor) rod-photoreceptor cells. Rod cells are especially important for seeing in the dark as they are extremely sensitive to even low levels of light.

After four to six weeks, the transplanted cells appeared to be functioning almost as well as normal rod-photoreceptor cells and had formed the connections needed to transmit visual information to the brain.

The researchers also tested the vision of the treated mice in a dimly lit maze. Those mice with newly transplanted rod cells were able to use a visual cue to quickly find a hidden platform in the maze whereas untreated mice were able to find the hidden platform only by chance after extensive exploration of the maze.

Professor Robin Ali at UCL Institute of Ophthalmology, who led the research, said:

Schematic of photoreceptor transplantation. Credit: UCL/Robin Ali

"We've shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We're hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.

"Although there are many more steps before this approach will be available to patients, it could lead to treatments for thousands of people who have lost their sight through degenerative eye disorders. The findings also pave the way for techniques to repair the central nervous system as they demonstrate the brain's amazing ability to connect with newly transplanted neurons."

Dr Rachael Pearson from UCL Institute of Ophthalmology and principal author, said:

"We are now finding ways to improve the efficiency of cone photoreceptor transplantation and to increase the effectiveness of transplantation in very degenerate retina. We will probably need to do both in order to develop effective treatments for patients."

Dr Rob Buckle, head of regenerative medicine at the MRC said:

"This is a landmark study that will inform future research across a wide range of fields including vision research, neuroscience and regenerative medicine. It provides clear evidence of functional recovery in the damaged eye through cell transplantation, providing great encouragement for the development of stem cell therapies to address the many debilitating eye conditions that affect millions worldwide."

The researchers demonstrated previously, in another study published in Nature, that it is possible to transplant photoreceptor cells into an adult mouse retina, provided the cells from the donor mouse are at a specific stage of development - when the retina is almost, but not fully, formed. In this study they optimised the rod transplantation procedure to increase the number of integrated into the recipient and so were able to restore vision.

Explore further: Sections of retinas regenerated and visual function increased with stem cells from skin

More information: DOI: 10.1038/nature10997

Related Stories

Sections of retinas regenerated and visual function increased with stem cells from skin

May 16, 2011
Scientists from Schepens Eye Research Institute are the first to regenerate large areas of damaged retinas and improve visual function using IPS cells (induced pluripotent stem cells) derived from skin. The results of their ...

Pig stem cell transplants: The key to future research into retina treatment

April 13, 2011
A team of American and Chinese scientists studying the role of stem cells in repairing damaged retina tissue have found that pigs represent an effective proxy species to research treatments for humans. The study, published ...

Algae may be the solution to blindness

April 15, 2011
(PhysOrg.com) -- The song about three blind mice may just be a song of the past according to new research presented by neuroscientist Alan Horsager from the Institute of Genetic Medicine at the University of Southern California ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.