Scientists discover key pathway for development of insulin-producing cells

July 17, 2012 BY KRISTA CONGER

(Medical Xpress) -- Researchers at the Stanford University School of Medicine have identified a molecular signaling pathway that drives the growth and maturation of young human beta cells — the insulin-producing cell type in the pancreas that malfunctions in diabetes — in mice and humans.

The pathway, called the Cn/NFAT pathway, has been shown to be important in the growth and development of many cell types, including immune cells and neurons. But this is the first time it’s been shown to be involved in the development of human .

“This is likely a major step forward in our understanding of how human beta cells become functional,” said Seung Kim, MD, PhD, professor of developmental biology and a Howard Hughes Medical Institute investigator. “We are beginning to apply what we’ve learned about the normal process of the pancreas to create substitute or replacement cell types for therapy in diabetes.”

Kim is the senior author of the research, published July 17 in Developmental Cell. Graduate student William Goodyer is the first author of the study.

The study comes on the heels of a previous study, published last October in Nature, in which Kim and other researchers in his lab described the involvement of a molecule called PDGF in beta cell development. Now, the new findings from Kim’s team bring scientists still closer to being able to generate functional beta cells in a laboratory dish for transplant into a human patient, or to coax a diabetic’s non-functioning beta cells to begin dividing and producing insulin.

The new research also solves a mystery as to why many adults taking a certain class of immunosuppressive drugs develop transient type-2 diabetes. In addition, the findings suggest a possible path for treating a subcategory of pancreatic cancer.

Beta cells are found in the islets of the pancreas. They are the only cells in the body that produce insulin, a hormone that signals the body to absorb sugar from the blood after a meal and store it in a variety of cells. Without adequate insulin production, blood sugar levels can become dangerously high — a condition called hyperglycemia — and cause organ damage or even coma and death. Type-1 diabetes is caused by a failure to produce insulin; type-2 diabetes is caused by combined deficits in the body to respond to and make insulin.

In the current study, the researchers learned that the Cn/NFAT pathway (an abbreviation for calcineurin/nuclear factor of activated T cells) drives the growth and maturation of beta cells after birth in mice and humans. They had suspected that the pathway might be involved because 10 to 30 percent of people receiving calcineurin inhibitors (drugs used to suppress the immune system after organ transplant, for example) develop temporary diabetes during their treatment.

“We knew this pathway was a good one to consider, because development of cells like beta cells requires a specific message to sense the need to change and mature,” said Kim. They wondered if the Cn/NFAT pathway could be that message for beta cells. In addition, they knew that calcineurin is activated by calcium, which also signals beta cells to release insulin.

The researchers found that mice in which the pathway was genetically inactivated secreted less insulin, had fewer beta cells and died within about 12 weeks of birth from severe diabetes; in contrast, stimulating a protein called glucokinase increased the expression of genes required for insulin storage and secretion in islet cells from young mice.

The investigations of this pathway in humans had been hampered by the fact that beta cell proliferation in the pancreas is robust in newborns and young children, but declines with age. The problem for researchers who want to study beta cells has been that very young human organ donors are rare and that obtaining islet cell samples from young, deceased children is complicated.

Kim has overcome this hurdle by, over the past several years, developing a network of organ donation professionals who know to call him when a child’s pancreas becomes available. He then extracts the islet cells from the tissue sample and uses them for research. This enabled the researchers to see whether their findings in mice are mirrored in young humans, in whom the beta cells in the pancreas undergo most of their maturation and growth from birth until about age 10.

“We know that certain cellular signals, such as calcium signaling, increase in the pancreas in mice after birth,” said Kim. “If we inactivate that calcium signaling, the beta cells don’t grow or develop. The key to our research was obtaining these pancreatic islets from young people, when all these things were still happening, so we could assess the significance of this pathway in humans.”

The researchers found that, as in mice, the levels of genes known to be important to beta cell proliferation were higher in human islet cells from donors aged 1 to 5 years than in islets from human adults. They also found that exposing these young human islet cells to a calcineurin inhibitor significantly reduced their proliferation.

The discovery of the involvement of the Cn/NFAT pathway in beta cell development has many implications.

“Through our long-standing partnership with my Stanford colleague Jerry Crabtree, we are trying to develop new drugs to treat diabetes based on these findings,” said Kim. “For example, we could activate the pathway with glucokinase, and also use compounds that block the natural inhibition of beta cell proliferation that occurs with age. It’s also possible that we could enhance the function and relevant properties of this pathway to generate replacement beta cells.”

Finally, understanding how to switch islet cell growth on and off may lead to new therapies for rare pancreatic islet cancers called neuroendocrine tumors.

“We think our findings are highly relevant for these types of cancers,” said Kim.

In addition to Goodyer and Kim, other Stanford researchers involved in the study include research assistant Xueying Gu, lab manager Yinghua Liu, and professor of pathology and of developmental biology Gerald Crabtree, MD.

Explore further: Researchers discover new molecular target for diabetes treatment

Related Stories

Researchers discover new molecular target for diabetes treatment

October 12, 2011
Researchers at the Stanford University School of Medicine have identified a key molecular pathway responsible for the natural decrease in the proliferation of insulin-producing cells that occurs as a person ages. Artificially ...

New sugar a treat for diabetes treatment

December 20, 2011
(Medical Xpress) -- Researchers from The Australian National University have discovered a new treatment for Type-1 diabetes – an autoimmune disease which currently affects some 130,000 Australians.

Scientists use uterine stem cells to treat diabetes

September 14, 2011
Controlling diabetes may someday involve mining stem cells from the lining of the uterus, Yale School of Medicine researchers report in a new study published in the journal Molecular Therapy. The team treated diabetes in ...

Insulin signaling is distorted in pancreases of Type 2 diabetics

December 13, 2011
Insulin signaling is altered in the pancreas, a new study shows for the first time in humans. The errant signals disrupt both the number and quality of beta cells — the cells that produce insulin.

Researchers discover mechanism that could convert certain cells into insulin-making cells

April 29, 2011
Simply put, people develop diabetes because they don't have enough pancreatic beta cells to produce the insulin necessary to regulate their blood sugar levels.

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.