Study finds novel therapy that may prevent damage to the retina in diabetic eye diseases

July 27, 2012, University of Michigan Health System

Researchers at the University of Michigan Kellogg Eye Center have identified a compound that could interrupt the chain of events that cause damage to the retina in diabetic retinopathy. The finding is significant because it could lead to a novel therapy that targets two mechanisms at the root of the disease: inflammation and the weakening of the blood barrier that protects the retina.

To date, treatments for diabetic retinopathy, the leading cause of blindness among working-age Americans, have been aimed largely at one of those mechanisms.

In diabetic retinopathy, damage to the results, in part, from the activity of (VEGF), a protein that weakens the protective blood-retinal barrier. Recent drugs targeting VEGF have exhibited good response for nearly half of the patients with diabetic retinopathy. But researchers believe that there is also an inflammatory component that may contribute to the disease process.

The study, published in the , June 2012 [epub ahead of print] identifies a specific protein common to both pathways as an important in regulating the disease process in which blood vessels become leaky, and provides a drug that may be developed into a for patients in which anti-VEGF treatment alone is not sufficient.

"In diabetic retinopathy and a host of other retinal diseases, increases in VEGF and inflammatory factors — some of the same factors that contribute to the response to an infection — cause blood vessels in the eye to leak which, in turn, results in a buildup of fluid in the neural tissue of the retina," says David A. Antonetti, Ph.D., Professor, Department of Ophthalmology and Visual Sciences and Molecular and Integrative Physiology, who has also been awarded a Jules and Doris Stein Professorship from Research to Prevent Blindness. "This insidious form of modified inflammation can eventually lead to blindness."

The compound targets atypical protein kinase C (aPKC), required for VEGF to make blood vessels leak. Moreover, Antonetti's laboratory has demonstrated that the compound is effective at blocking damage from tumor necrosis factor also elevated in that comprises part of the inflammation. Benefits of this compound could extend to therapies for uveitis, or changes to the brain blood vessels in the presence of brain tumors or stroke.

"This is a great leap forward," says Antonetti. "We've identified an important target in regulating blood vessel leakage in the eye and we have a therapy that works in animal models. Our research is in the early stages of development. We still have a long way to go to demonstrate effectiveness of this compound in humans to create a new therapy but the results are very promising."

More information: Novel Atypical PKC Inhibitors Prevent Vascular Endothelial Growth Factor-Induced Blood-Retinal Barrier Dysfunction, Biochemical Journal, 22 June 2012 [epub ahead of print]

Related Stories

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.