Study finds novel therapy that may prevent damage to the retina in diabetic eye diseases

July 27, 2012

Researchers at the University of Michigan Kellogg Eye Center have identified a compound that could interrupt the chain of events that cause damage to the retina in diabetic retinopathy. The finding is significant because it could lead to a novel therapy that targets two mechanisms at the root of the disease: inflammation and the weakening of the blood barrier that protects the retina.

To date, treatments for diabetic retinopathy, the leading cause of blindness among working-age Americans, have been aimed largely at one of those mechanisms.

In diabetic retinopathy, damage to the results, in part, from the activity of (VEGF), a protein that weakens the protective blood-retinal barrier. Recent drugs targeting VEGF have exhibited good response for nearly half of the patients with diabetic retinopathy. But researchers believe that there is also an inflammatory component that may contribute to the disease process.

The study, published in the , June 2012 [epub ahead of print] identifies a specific protein common to both pathways as an important in regulating the disease process in which blood vessels become leaky, and provides a drug that may be developed into a for patients in which anti-VEGF treatment alone is not sufficient.

"In diabetic retinopathy and a host of other retinal diseases, increases in VEGF and inflammatory factors — some of the same factors that contribute to the response to an infection — cause blood vessels in the eye to leak which, in turn, results in a buildup of fluid in the neural tissue of the retina," says David A. Antonetti, Ph.D., Professor, Department of Ophthalmology and Visual Sciences and Molecular and Integrative Physiology, who has also been awarded a Jules and Doris Stein Professorship from Research to Prevent Blindness. "This insidious form of modified inflammation can eventually lead to blindness."

The compound targets atypical protein kinase C (aPKC), required for VEGF to make blood vessels leak. Moreover, Antonetti's laboratory has demonstrated that the compound is effective at blocking damage from tumor necrosis factor also elevated in that comprises part of the inflammation. Benefits of this compound could extend to therapies for uveitis, or changes to the brain blood vessels in the presence of brain tumors or stroke.

"This is a great leap forward," says Antonetti. "We've identified an important target in regulating blood vessel leakage in the eye and we have a therapy that works in animal models. Our research is in the early stages of development. We still have a long way to go to demonstrate effectiveness of this compound in humans to create a new therapy but the results are very promising."

More information: Novel Atypical PKC Inhibitors Prevent Vascular Endothelial Growth Factor-Induced Blood-Retinal Barrier Dysfunction, Biochemical Journal, 22 June 2012 [epub ahead of print]

Related Stories

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.