Autism Speaks and SAGE Labs develop rat models for translational autism research

August 2, 2012

Autism Speaks, the world's leading autism science and advocacy organization, today announced its expanded collaboration with Sigma Advanced Genetic Engineering (SAGE) Labs, an initiative of Sigma Life, to develop the first rat models with modified autism associated genes, intended to accelerate discovery and translational autism research.

Expansion of the collaboration follows initial behavioral studies demonstrating that the first two publicly available gene knockout rats, part of the seven rats generated through the collaboration to date, exhibit hallmark characteristics of autism, such as and . Many of autism observed in these rats are not seen in other animal models currently used for . SAGE Labs and Autism Speaks now plan to generate additional genetically modified rat models of key autism-associated genes, including CNTNAP2 and MET.

"Autism spectrum disorders are a complex condition with significant unmet medical needs. Although uniquely human, fundamental aspects of the biology underlying autism can be effectively modeled in animals to advance our understanding of cause and enable translation of basic into medical breakthroughs that improve the quality of life for individuals on the spectrum," says Robert Ring, Ph.D., Vice President of Translational Research at Autism Speaks. "These new autism-relevant rat models have already demonstrated great potential for the field. Our new agreement ensures that additional models will continue to be developed and made available to accelerate progress along the entire translational research continuum, from academia to the pharmaceutical industry."

"Modeling human conditions in rats, rather than the mice that have come to predominate , enables more predictive studies of complex neurobehavioral conditions. Rats are unique in that they exhibit richer, more human-like social behaviors than mice, juvenile play being one example. The more complex neural circuitry and greater cognitive capacity in rats also enables researchers to complete many of the demanding—and crucially informative—cognitive tests that mice cannot perform. In addition, on a practical level, performing initial studies in rats also provides a direct path for drug development," says Edward Weinstein, Ph.D., Director of SAGE Labs.

Initial behavioral studies of the gene knockout rats generated by SAGE Labs are being conducted by Richard E. Paylor, Ph.D., Professor at the Baylor College of Medicine. In some cases, behaviors observed in the rat models have differed from existing mouse models. For example, whereas FMR1 knockout mice exhibit elevated social interactions, rats lacking the same gene participate much less in social play and emit fewer ultrasonic squeaks during play sessions than control rats. These types of social impairments, such as reduced verbal and interactive play, more closely parallel symptoms seen in humans with FMR1 mutations. Rat models lacking functional NLGN3 and FMR1 genes also display other unexpected characteristics, including compulsive chewing on water bottles and wood blocks. Compulsive and repetitive behaviors are core symptoms in individuals with .

"At SAGE Labs we use CompoZr Zinc Finger Nuclease technology to perform targeted genetic modifications in species previously not amenable to such modifications — be it gene knockout, transgene insertion, point mutations, or conditional gene knockout. We can help researchers and pharmaceutical companies access rats, rabbits and other species that best model a medical condition of interest and provide a direct path for preclinical efficacy and toxicology testing," says Weinstein.

Currently SAGE Labs publicly provides two rat lines with knockouts of autism-associated FMR1 and NLGN3 genes. The remaining five gene knockout rat lines developed in the original collaboration—for the genes MECP2, NRXN1, CACNA1C, PTEN, and MGLUR5—are expected to be released soon. The CNTNAP2 and MET knockout rat lines to be generated in the expanded collaboration are expected to be available in 2013.

Explore further: Can one model the social deficits of autism and schizophrenia in animals?

Related Stories

Can one model the social deficits of autism and schizophrenia in animals?

May 5, 2011
5 May 2011 - The use of animal models to study human disease is essential to help advance our understanding of disease and to develop new therapeutic treatments.

Autism Speaks and BGI to complete whole genome sequencing on 10,000 with autism

October 13, 2011
Autism Speaks, the world's largest autism science and advocacy organization, and BGI, the largest genomic organization in the world and a global leader in whole genome sequencing, jointly announce their partnership to create ...

Autism risk gene linked to differences in brain structure

March 21, 2012
Healthy individuals who carry a gene variation linked to an increased risk of autism have structural differences in their brains that may help explain how the gene affects brain function and increases vulnerability for autism. ...

Recommended for you

New autism study a "shocking wake-up call" for society, say academics

October 23, 2017
People who show characteristics of autism are more at risk of attempting suicide, according to a Coventry University study whose results are being presented to a United States federal advisory committee tomorrow.

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Whole genome sequencing identifies new genetic signature for autism

October 12, 2017
Autism has genetic roots, but most cases can't be explained by current genetic tests.

Mum's immune response could trigger social deficits for kids with autism

October 10, 2017
The retrospective cohort study of 220 Australian children, conducted between 2011-2014, indicates that a "an immune-mediated subtype" of autism driven by the body's inflammatory and immunological systems may be pivotal, according ...

Largest study to date reveals gender-specific risk of autism occurrence among siblings

September 25, 2017
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.