Making sense out of the biological matrix of bipolar disorder

August 20, 2012

The more that we understand the brain, the more complex it becomes. The same can be said about the genetics and neurobiology of psychiatric disorders. For "Mendelian" disorders, like Huntington disease, mutation of a single gene predictably produces a single clinical disorder, following relatively simple genetic principals. Compared to Mendelian disorders, understanding bipolar disorder has been extremely challenging. Its biology is not well understood and its genetics are complex.

In a new paper, Dr. Inti Pedroso and colleagues utilize an integrative approach to probe the biology of bipolar disorder. They combined the results of three genome-wide association studies, which examined the association of common gene variants with bipolar disorder throughout the genome, and a study of in post-mortem brain tissue from people who had been diagnosed with bipolar disorder. The findings were analyzed within the context of how relate to each other based on the Human Protein Reference Database protein- network.

"None of our research approaches provides us with sufficient information, by itself, to understand the neurobiology of psychiatric disorders. This innovative paper wrestles with this challenge in a creative way that helps us to move forward in thinking about the neurobiology of bipolar disorder," commented Dr. John Krystal, Editor of .

Dr. Pedroso explained, "We combined information about genetic variation from thousands of cases and controls with brain and information from protein databases to identify networks of genes and proteins in the brain that are key in the development of bipolar disorder."

The analysis resulted in the ability to define risk gene variants that were deemed functional, by virtue of the association with changes in , and to group these functional gene variants in biologically meaningful pathways.

The results implicated genes involved in several neural signaling pathways, including the Notch and Wnt signaling pathways. These pathways are key processes in neurotransmission and brain development and these findings indicate they are also likely to be involved in causing this severe disorder. The authors noted that three features stand out among these genes: i) they localized to the human postsynaptic density, which is crucial for neuronal function; ii) their mouse knockouts present altered behavioral phenotypes; and iii) some are known targets of the pharmacological treatments for bipolar disorder.

Dr. Gerome Breen, senior author on the study and Senior Lecturer at King's College London Institute of Psychiatry, said, "Our study provides some of the first evidence to show the biochemical and developmental processes involved in causing risk for developing this life-long and costly illness. We have highlighted potential new avenues for new drug treatments and intervention."

Explore further: Most powerful genetic study of psychosis to date

More information: The article is "Common Genetic Variants and Gene-Expression Changes Associated with Bipolar Disorder Are Over-Represented in Brain Signaling Pathway Genes" by Inti Pedroso, Anbarasu Lourdusamy, Marcella Rietschel, Markus M. Nöthen, Sven Cichon, Peter McGuffin, Ammar Al-Chalabi, Michael R. Barnes, and Gerome Breen (doi: 10.1016/j.biopsych.2011.12.031). The article appears in Biological Psychiatry, Volume 72, Issue 4 (August 15, 2012)

Related Stories

Most powerful genetic study of psychosis to date

November 1, 2011
(Medical Xpress) -- Two genome wide studies involving more than 50,000 participants have identified new genetic risk factors for schizophrenia and bipolar disorder. The research was conducted by over 250 scientists from more ...

Large study finds genetic 'overlap' between schizophrenia, bipolar disorder

September 21, 2011
Knowledge about the biological origin of diseases like schizophrenia, bipolar disorder and other psychiatric conditions is critical to improving diagnosis and treatment.

Recommended for you

Taking probiotics may reduce postnatal depression

October 18, 2017
Researchers from the University of Auckland and Otago have found evidence that a probiotic given in pregnancy can help prevent or treat symptoms of postnatal depression and anxiety.

Before assigning responsibility, our minds simulate alternative outcomes, study shows

October 17, 2017
How do people assign a cause to events they witness? Some philosophers have suggested that people determine responsibility for a particular outcome by imagining what would have happened if a suspected cause had not intervened.

For older adults, volunteering could improve brain function

October 17, 2017
Older adults worried about losing their cognitive functions could consider volunteering as a potential boost, according to a University of Missouri researcher. While volunteering and its associations with physical health ...

Magic mushrooms may 'reset' the brains of depressed patients

October 13, 2017
Patients taking psilocybin to treat depression show reduced symptoms weeks after treatment following a 'reset' of their brain activity.

Living near a forest keeps your amygdala healthier

October 13, 2017
A study conducted at the Max Planck Institute for Human Development has investigated the relationship between the availability of nature near city dwellers' homes and their brain health. Its findings are relevant for urban ...

Scientists researching drugs that could improve brain function in people with schizophrenia

October 12, 2017
Virginia Commonwealth University researchers are testing if drugs known as HDAC inhibitors improve cognition in patients with schizophrenia who have been treated with the antipsychotic drug clozapine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.