Brain enzyme is double whammy for Alzheimer's disease

August 20, 2012, Sanford-Burnham Medical Research Institute
This shows beta-amyloid plaques (red) in the brain of an Alzheimer's disease patient. Credit: Sanford-Burnham Medical Research Institute

The underlying causes of Alzheimer's disease are not fully understood, but a good deal of evidence points to the accumulation of β-amyloid, a protein that's toxic to nerve cells. β-amyloid is formed by the activity of several enzymes, including one called BACE1. Most Alzheimer's disease patients have elevated levels of BACE1, which in turn leads to more brain-damaging β-amyloid protein.

In a paper published August 15 in The Journal of Neuroscience, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) found that BACE1 does more than just help produce β-amyloid—it also regulates another cellular process that contributes to memory loss. This means that just inhibiting BACE1's enzymatic activity as a means to prevent or treat Alzheimer's disease isn't enough—researchers will have to prevent cells from making it at all.

"Memory loss is a big problem—not just in Alzheimer's disease, but also in the normal aging population," said Huaxi Xu, Ph.D., professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging, and Stem Cell Research Center and senior author of the study. "In this study, we wanted to better understand how BACE1 plays a role in memory loss, apart from β-amyloid production."

To do this, Xu and his team used a mouse model that produces human BACE1. Mice produce a different type of β-amyloid, one that's far less toxic than the human version. So, in this system, they could look solely at how BACE1 functions independent from β-amyloid formation. If BACE1 only acted to produce β-amyloid, the researchers would expect to see no effect when mice produce human BACE1—since mouse β-amyloid isn't very toxic, extra BACE1 would be no big deal. Instead, they saw that the enzyme still impaired learning and memory, indicating a secondary function at work.

If it's not producing β-amyloid, what is BACE1 doing? Many years ago, scientists found that a protein in the brain—protein kinase A (PKA), better known for directing cellular metabolism—also plays an important role in memory formation. In this study, Xu and colleagues found that BACE1 disrupts the cell's production of other molecules required for PKA function. By that mechanism, BACE1 inactivates PKA and therefore inhibits memory formation in mice, even in the absence of neurotoxic β-amyloid.

"So BACE1 is a double whammy when it comes to memory," Xu said. "But that also means that a therapy that targets BACE1 could be a double punch against , and even just normal aging-related . That's why we're now looking for ways to block BACE1 expression in the brain."

Explore further: New drug target improves memory in mouse model of Alzheimer's disease

Related Stories

New drug target improves memory in mouse model of Alzheimer's disease

March 7, 2012
(Medical Xpress) -- Researchers at the University of California, San Diego, the Medical University of South Carolina, the University of Cincinnati, and American Life Science Pharmaceuticals of San Diego have validated the ...

Potential new drug candidate found for Alzheimer's disease

May 31, 2011
Researchers at the University of California, San Diego, the Medical University of South Carolina and American Life Science Pharmaceuticals of San Diego have demonstrated that oral administration of a cysteine protease inhibitor, ...

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

Diametric shift in 2 protein levels spurs Alzheimer's plaque accumulation

December 1, 2011
A diametric shift in the levels of two proteins involved in folding, moving and cutting other proteins enables accumulation of the destructive brain plaque found in Alzheimer's disease, researchers report.

Recommended for you

What really causes Alzheimer's and how might we fix it?

May 23, 2018
There have been a lot of theories about what causes Alzheimer's disease. Many of them have given rise to experimental treatments of one form or another. None of them have worked much better than taking anything you might ...

Study predicts most people with earliest Alzheimer's signs won't develop dementia associated with the disease

May 22, 2018
During the past decade, researchers have identified new ways to detect the earliest biological signs of Alzheimer's disease. These early signs, which are detected by biomarkers, may be present before a person starts to exhibit ...

Moderate to high intensity exercise does not slow cognitive decline in people with dementia

May 16, 2018
Moderate to high intensity exercise does not slow cognitive (mental) impairment in older people with dementia, finds a trial published by The BMJ today.

Mutation discovered to protect against Alzheimer's disease in mice

May 16, 2018
Researchers at the RIKEN Center for Brain Science have discovered a mutation that can protect against Alzheimer's disease in mice. Published in the scientific journal Nature Communications, the study found that a specific ...

Most deprived are nearly twice as likely to develop dementia

May 16, 2018
Older adults in England with fewer financial resources are more likely to develop dementia, according to new UCL research.

Scientists discover a variation of the genome predisposing to Alzheimer's disease

May 15, 2018
An article published in Nature Medicine shows that the inheritance of small changes in DNA alters the expression of the PM20D1 gene and is associated with an increased risk of developing Alzheimer's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.