Mending a broken heart -- with a molecule that turns stem cells into heart cells

August 2, 2012
These are cardiomyocytes (heart muscle cells) generated from stem cells and expressing a green fluorescent protein. Credit: Sanford-Burnham Medical Research Institute

For years, scientists have been looking for a good source of heart cells that can be used to study cardiac function in the lab, or perhaps even to replace diseased or damaged tissue in heart disease patients. To do this, many are looking to stem cells. Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham), the Human BioMolecular Research Institute, and ChemRegen, Inc. have been searching for molecules that convert stem cells to heart cells for about eight years—and now they've found one. Writing in the August 3 issue of Cell Stem Cell, the team describes how they sifted through a large collection of drug-like chemicals and uncovered ITD-1, a molecule that can be used to generate unlimited numbers of new heart cells from stem cells.

" is the leading cause of death in this country. Because we can't replace lost cardiac muscle, the condition irreversibly leads to a decline in heart function and ultimately death. The only way to effectively replace lost heart muscle cells—called cardiomyocytes—is to transplant the entire heart," said Mark Mercola, Ph.D., director of Sanford-Burnham's Muscle Development and Regeneration Program and senior author of the study. "Using a drug to create new heart muscle from stem cells would be far more appealing than heart transplantation."

Searching for a needle in a haystack

Stem cells are important because they do two unique things—1) self-renew, producing more stem cells and 2) differentiate, becoming other, more specialized cell types. To obtain a large number of a certain cell type, such as , the hard part is figuring out the signals that direct them to become the desired cell type.

Mercola's group has been hunting for heart-inducing signals for 15 years—in embryos and in stem cells. To find a synthetic molecule that might one day lead to a drug therapy to regenerate the heart, they joined forces with a team of medicinal chemists at the Human BioMolecular Research Institute led by John Cashman, Ph.D. With funding from the California Institute for Regenerative Medicine, they used sophisticated robotic technology to methodically test a large collection of drug-like chemicals, looking for that needle in a haystack that, when added to stem cells, results in cardiomyocytes. The winning compound was ITD-1.

Therapeutic applications

There's no shortage of therapeutic possibilities for ITD-1. "This particular molecule could be useful to enhance stem cell differentiation in a damaged heart," explained Erik Willems, Ph.D., postdoctoral researcher in Mercola's lab and first author of the study. "At some point, it could become the basis for a new therapeutic drug for cardiovascular disease—one that would likely limit scar spreading in heart failure and promote new muscle formation."

Mercola, Willems, and Cashman are now working with San Diego biotech company ChemRegen, Inc. to further develop ITD-1 into a drug that one day might be used to treat patients.

More scientific detail

The researchers discovered that ITD-1 blocks a cellular process known as TGFϐ signaling. TGFϐ (short for transforming growth factor-ϐ) is a protein produced by one cell type to influence others' behaviors, such as proliferation, scarring, and even stem cell differentiation. TGFϐ works from outside the cell, binding to a receptor on the surface of a responding cell to initiate an intracellular signaling cascade that causes genes to be switched on or off, ultimately altering cellular behavior—in this case making muscle.

ITD-1 triggers degradation of the TGFϐ receptor, thus inhibiting the whole process. With TGFϐ signaling turned off, are set on a course toward cardiogenesis. ITD-1 is the first selective inhibitor of TGFϐ, meaning that it might also have applications in many other processes controlled by TGFϐ.

Explore further: Helping the heart help itself: Research points to new use for stem cells

Related Stories

Helping the heart help itself: Research points to new use for stem cells

April 8, 2011
(PhysOrg.com) -- Human trials of stem cell therapy for post-heart attack patients have raised as many questions as they have answered -- because while the patients have tended to show some improvement in heart function, the ...

Aging heart cells rejuvenated by modified stem cells

July 23, 2012
Damaged and aged heart tissue of older heart failure patients was rejuvenated by stem cells modified by scientists, according to research presented at the American Heart Association's Basic Cardiovascular Sciences 2012 Scientific ...

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011
Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Recommended for you

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

hyongx
not rated yet Aug 02, 2012
This headline is terrible !!
haha....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.