Researchers elucidate cause of death of photoreceptor cells in retinitis pigmentosa

August 20, 2012

Research conducted at the Angiogenesis Laboratory at Massachusetts Eye and Ear Infirmary, has for the first time, identified the mode of death of cone photoreceptor cells in an animal model of retinitis pigmentosa (RP).

This groundbreaking study, led by Demetrios G. Vavvas, M.D., Ph.D., and including Joan W. Miller, M.D., Mass. Eye and Ear/Mass General Hospital Chief of Ophthalmology and Chair of Ophthalmology at Harvard Medical School, has further identified the receptor interacting protein (RIP) kinase pathway as a potential target for developing treatment for in patients with retinitis pigmentosa. The study is expected to be published the week of Aug. 20 in the Early Edition.

Retinitis pigmentosa is an inherited condition that causes irreversible vision loss due to the degeneration of photoreceptor cells in the eye called "rods" and "cones." Rods are responsible for night vision, while cones are responsible for daylight and central vision. Vision loss from RP often begins with loss of night vision, due to death of rods, followed by loss of peripheral and , due to death of rods and cones. Such vision loss can have a significant impact on people's daily lives, such as affecting their ability to read or drive a car. RP affects more than 1 million people around the world.

Research conducted by Eliot L. Berson, M.D., of the Berman-Gund Laboratory for the Study of Retinal Degenerations at Mass. Eye and Ear, has shown that and an omega-3 rich diet can slow visual decline resulting from RP; they do not completely stop disease progression, however. For most patients, RP results in irreversible vision loss.

Previous studies have identified mutations in more than 50 genes that cause RP, but the mechanisms by which rods and cones die remain to be completely defined. Since many of the genes associated with RP produce proteins that are used specifically in , it is still a puzzle why and how cones, which in some cases do not use the mutant proteins, die after rods degenerate. Using an animal model of RP, the investigators studied whether RIP kinase mediated necrosis is involved in the death of , finding for the first time that it is involved in cone degeneration and that a deficiency of RIP kinase reduced cone loss. Moreover, the study found that treatment with a drug that inhibits RIP kinase significantly delayed cone cell death and preserved cone photoreceptors.

"Though the precise mechanisms involved in RIP kinase inducing necrosis remain unknown, our finding that necrosis results in cone cell puts us one step closer to understanding this disease and, more importantly, moves us one step closer to being able to provide novel therapies to millions of patients with vision loss," said Dr. Vavvas.

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

More information: www.pnas.org/cgi/doi/10.1073/pnas.1206937109

Related Stories

Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

August 31, 2011
A new research report published in The FASEB Journal will help ophthalmologists and scientists better understand a rare genetic disease that causes increased susceptibility to blue light, night blindness, and decreased vision ...

Recommended for you

World's blind population to soar: study

August 3, 2017
The world's blind will increase threefold from about 36 million today to 115 million in 2050 as populations expand and individuals grow ever older, researchers said Thursday.

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

Too little vitamin D may hinder recovery of injured corneas

July 24, 2017
Injury or disease in combination with too little vitamin D can be bad for the window to your eyes.

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

MrVibrating
not rated yet Aug 20, 2012
I know someone with this condition - used to be a driver on my firm, then, as the disease progressed, a controller, until eventually he could no longer read the computer screen.. he's now forced into early retirement, but the UK benefits gestapo have denied him sickness benefits saying he's fully able to work (go figure) - he's still got a narrow tunnel of vision but it's deteriorating all the time... i just hope this discovery can be capitalised on, and quickly. Else, his only hope will be Nirenberg et al's recent breakthrough...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.