Why living in the moment is impossible: Study finds decision-making memories stored in mysterious brain area

August 9, 2012
Brain

(Medical Xpress) -- The sought-after equanimity of "living in the moment" may be impossible, according to neuroscientists who've pinpointed a brain area responsible for using past decisions and outcomes to guide future behavior. The study, based on research conducted at the University of Pittsburgh and published today in the professional journal Neuron, is the first of its kind to analyze signals associated with metacognition—a person's ability to monitor and control cognition (a term cleverly described by researchers as "thinking about thinking.")

"The brain has to keep track of decisions and the outcomes they produce," said Marc Sommer, who did his research for the study as a University of Pittsburgh neuroscience faculty member and is now on the faculty at Duke University. "You need that continuity of thought," Sommer continued. "We are constantly keeping decisions in mind as we move through life, thinking about other things. We guessed it was analogous to working memory, which would point toward the prefrontal cortex."

Sommer predicted that neuronal correlates of metacognition resided in the same brain areas responsible for cognition, including the frontal cortex—a part of the brain linked with personality expression, decision making, and social behavior. Sommer worked with Paul G. Middlebrooks, who did his research for the study at Pitt before he received his Pitt PhD in neuroscience in 2011; Middlebrooks is now a postdoctoral fellow at Vanderbilt University. The research team studied single in vivo in three frontal cortical regions of the brain: the frontal eye field (associated with visual attention and eye movements), the dorsolateral prefrontal cortex (responsible for motor planning, organization, and regulation), and the supplementary eye field (SEF) involved in the planning and control of saccadic eye movements, which are the extremely fast movements of the eye that allow it to continually refocus on an object.

To learn where metacognition occurs in the brain, subjects performed a visual decision-making task that involved random flashing lights and a dominant light on a cardboard square. Participants were asked to remember and pinpoint where the dominant light appeared, guessing whether they were correct. The researchers found that while neural activity correlated with decisions and guesses in all three brain areas, the putative metacognitive activity that linked decisions to bets resided exclusively in the SEF.

"The SEF is a complex area [of the ] linked with motivational aspects of behavior," said Sommer. "If we think we're going to receive something good, neuronal activity tends to be high in SEF. People want good things in life, and to keep getting those good things, they have to compare what's going on now versus the decisions made in the past."

Sommer noted that defining such concepts related to metacognition, like consciousness, has been difficult for decades. He sees his research and future work related to studying metacognition as one step in a systematic process of working toward a better understanding of consciousness. By studying metacognition, he says, he reduces the big problem of studying a "train of thought" into a simpler component: examining how one cognitive process influences another.

"Why aren't our thoughts independent of each other? Why don't we just live in the moment? For a healthy person, it's impossible to live in the moment. It's a nice thing to say in terms of seizing the day and enjoying life, but our inner lives and experiences are much richer than that."

So far, patients with mental disorders have not been tested on these tasks, but Sommer is interested to see how SEF and other might be disrupted in these disorders.

"With schizophrenia and Alzheimer's disease, there is a fracturing of the thought process. It is constantly disrupted, and despite trying to keep a thought going, one is distracted very easily," Sommers said. "Patients with these disorders have trouble sustaining a memory of past decisions to guide later behavior, suggesting a problem with metacognition."

Explore further: Metacognition: I know (or don't know) that I know

Related Stories

Metacognition: I know (or don't know) that I know

February 27, 2012
At New York University, Sir Henry Wellcome Postdoctoral Fellow Dr. Steve Fleming is exploring the neural basis of metacognition: how we think about thinking, and how we assess the accuracy of our decisions, judgements and ...

Neural balls and strikes: Where categories live in the brain

January 15, 2012
Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area ...

Conscious perception is a matter of global neural networks

June 13, 2012
(Medical Xpress) -- Consciousness is a selective process that allows only a part of the sensory input to reach awareness. But up to today it has yet to be clarified which areas of the brain are responsible for the content ...

How humans predict other's decisions

June 20, 2012
Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the ...

How fair sanctions are orchestrated in the brain

October 6, 2011
Civilized human cohabitation requires us to respect elementary social norms. We guarantee compliance with these norms with our willingness to punish norm violations – often even at our own expense. This behavior goes ...

Recommended for you

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ziphead
5 / 5 (1) Aug 12, 2012
I sincerely doubt that Marc Sommer understands what living in the moment truly is about.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.