Researchers solve mystery surrounding the death of two sisters nearly 50 years ago

August 29, 2012

Researchers at Mount Sinai School of Medicine have identified the genetic cause of a rare and fatal bone disease by studying frozen skin cells that were taken from a child with the condition almost fifty years ago. Their study, which details how the MT1-MMP gene leads to the disease known as Winchester syndrome, appears in the August 23, 2012 online edition of The American Journal of Human Genetics.

In 1969, Patricia Winchester, MD, a pediatric radiologist in New York City, was asked to diagnose two young sisters who were losing bone in their hands and feet, developing severe arthritis in their fingers and losing movement of their shoulders, elbows, hips and knees because of osteoporosis. The frozen that were recently studied by principal investigator, John Martignetti, MD, PhD, and his team of researchers in the Department of Genetics and at Mount Sinai, had been taken from one of the sisters. Ultimately, the disease rendered the girls incapable of moving without assistance, and proved fatal.

The cause of the disease has remained unknown until now, when the study's lead authors, post-doctoral students, Rebecca Mosig, PhD and Brad Evans, PhD, zeroed in on the MT1-MMP gene.

"This gene encodes an enzyme that needs to be specifically positioned on the membranes of cells to function correctly," explains Dr. Martignetti. "What we discovered is that these girls had a which resulted in incorrect shuttling of the protein. Instead of being directed to the cell surface where it could interact with the outside environment, the never reached its final, correct destination and remained trapped in the cell's cytoplasm. Mislocalized, it lost its ability to function and the children developed severe arthritis and bone The enzyme lost its ability to interact with another disease-casuing protein, MMP-2. Dr. Martignetti's team had previously identifed mutations in the MMP-2 gene as the cause of a similar group of bone disorders in children.

The researchers says this recent discovery should provide diagnostic clarity and insight into possible treatments for children with Winchester syndrome, and other bone disorders, and for people in the general population who have osteoporosis and arthritis.

Explore further: Pituitary hormone TSH found to directly influence bone growth

Related Stories

Pituitary hormone TSH found to directly influence bone growth

September 13, 2011
Researchers at Mount Sinai School of Medicine have found that thyroid-stimulating hormone (TSH), a hormone produced in the anterior pituitary gland that regulates endocrine function in the thyroid gland, can promote bone ...

Dual action polyclonal antibody may offer more effective, safer protection against osteoporosis

August 20, 2012
A new study suggests that a polyclonal antibody that blocks follicle-stimulating hormone (FSH) in mice without ovaries might offer a more effective way to prevent or arrest osteoporosis than currently available treatments.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.