Precise and persistent cell sabotage: Control of siRNA could aid regenerative medicine, cancer therapy

August 27, 2012

Some of the body's own genetic material, known as small interfering RNA (siRNA), can be packaged then unleashed as a precise and persistent technology to guide cell behavior, researchers at Case Western Reserve University report in the current issue of the journal, Acta Biomaterialia.

The research group, led by Eben Alsberg, associate professor in the departments of Biomedical Engineering and Orthopedic Surgery, have been pursuing experiments that seek to catalyze stem cells to grow into, for example, bone and , instead of fat, smooth muscle and other cell types.

Beyond tissue engineering, the scientists believe that their technology could be used to starve a tumor by blocking growth of blood vessels that carry nutrition to a malignancy. Or the siRNA could bring on cancer cell death by interfering with other cellular processes.

siRNA is a short section of double-stranded RNA that inhibits gene expression. The molecule can jam up the machinery that produces specific proteins important to cell processes.

A current challenge to using siRNA to block growth of or guide in tissue engineering, is that the tiny material rapidly disperses when injected in the bloodstream or directly into target tissues.

Alsberg, Khanh Nguyen, a postdoctoral researcher, and Phuong N Dang a doctoral student here, packaged siRNA in a mix of polymeric materials. Under ultraviolet light, the mix is induced to form hydrogels connected by a network of polymer threads.

As the threads of the hydrogels break down, the siRNA molecules are cut loose to redirect the fate of the targeted cells. Ultimately, this system can be injected into a and application of light from outside the body will induce hydrogel formation.

"Local delivery helps target the siRNA to specific of interest, such as in a tumor or stem cells in a ," Alsberg said. "The ability to alter cell behavior with siRNA can depend on the length of exposure time to the genetic material.

"We can tune the material properties so we can control the dose and rate at which cells are exposed to siRNA. This capacity may prove to be therapeutically valuable."

Tests showed the siRNA effectively interfered with a signal pathway of cells surrounding and inside the hydrogels over an extended period of time.

By adjusting the formula, essentially adding more hands that hold onto the siRNA in the hydrogel complex, the team increased the amount to time target cells are exposed to siRNA from a few days up to a few weeks, thus prolonging the sabotage of undesired cell development.

Related Stories

Recommended for you

Long-lasting blood vessel repair in animals via stem cells

October 23, 2017
Stem cell researchers at Emory University School of Medicine have made an advance toward having a long-lasting "repair caulk" for blood vessels. The research could form the basis of a treatment for peripheral artery disease, ...

Synthetic hydrogels deliver cells to repair intestinal injuries

October 23, 2017
By combining engineered polymeric materials known as hydrogels with complex intestinal tissue known as organoids - made from human pluripotent stem cells - researchers have taken an important step toward creating a new technology ...

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.