Scientists uncover strategy able to dramatically reduce chemotherapy's side effects

August 14, 2012

Researchers in Leuven (VIB/KU Leuven) have confirmed their hypothesis that normalizing blood vessels by blocking oxygen sensor PHD2 would make chemotherapy more effective. They also demonstrated for the first time that this strategy would reduce the harmful side effects of chemotherapy on healthy organs.

The effectiveness of is first and foremost limited by the difficulties of delivering the anticancer drugs to the actual tumor. Tumors are characterized by abnormally shaped blood vessels – they are irregular in shape, have weak textures and easily tear. These leaking blood vessels prevent anticancer drugs from reaching tumor cells while promoting metastasis. Secondly, chemotherapy can have seriously harmful effects on healthy organs, leading even to heart and kidney failure.

Earlier research at Max Mazzone's lab had already shown that reduced activity of the PHD2 under hypoxic conditions resulted in a more streamlined vasculature. In this new study, and using mouse models, Rodrigo Leite de Oliveira, Sofie Deschoemaker and Max Mazzone prove their earlier hypothesis that streamlining blood flow by inhibiting PHD2 can render cancer treatments more effective. Firstly, the better formed ensure that the are distributed throughout the tumor, thus increasing their impact. They also allow for smaller doses – a significant advantage when administering toxic drugs. The researchers further proved that inhibiting PHD2 results in the production of anti-oxidant enzymes able to neutralize the harmful side effects of chemotherapy.

The study is promising: chemotherapy combined with specific PHD2 inhibitors would make chemotherapy more effective while reducing the harmful side effects that place such a heavy burden on patients. Unfortunately, there are no specific inhibitors available right now, so we have a long way to go before patients will be able to benefit from this discovery.

Explore further: New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

Related Stories

New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

October 11, 2011
Belgian researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.