Scientists uncover strategy able to dramatically reduce chemotherapy's side effects

August 14, 2012

Researchers in Leuven (VIB/KU Leuven) have confirmed their hypothesis that normalizing blood vessels by blocking oxygen sensor PHD2 would make chemotherapy more effective. They also demonstrated for the first time that this strategy would reduce the harmful side effects of chemotherapy on healthy organs.

The effectiveness of is first and foremost limited by the difficulties of delivering the anticancer drugs to the actual tumor. Tumors are characterized by abnormally shaped blood vessels – they are irregular in shape, have weak textures and easily tear. These leaking blood vessels prevent anticancer drugs from reaching tumor cells while promoting metastasis. Secondly, chemotherapy can have seriously harmful effects on healthy organs, leading even to heart and kidney failure.

Earlier research at Max Mazzone's lab had already shown that reduced activity of the PHD2 under hypoxic conditions resulted in a more streamlined vasculature. In this new study, and using mouse models, Rodrigo Leite de Oliveira, Sofie Deschoemaker and Max Mazzone prove their earlier hypothesis that streamlining blood flow by inhibiting PHD2 can render cancer treatments more effective. Firstly, the better formed ensure that the are distributed throughout the tumor, thus increasing their impact. They also allow for smaller doses – a significant advantage when administering toxic drugs. The researchers further proved that inhibiting PHD2 results in the production of anti-oxidant enzymes able to neutralize the harmful side effects of chemotherapy.

The study is promising: chemotherapy combined with specific PHD2 inhibitors would make chemotherapy more effective while reducing the harmful side effects that place such a heavy burden on patients. Unfortunately, there are no specific inhibitors available right now, so we have a long way to go before patients will be able to benefit from this discovery.

Explore further: New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

Related Stories

New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

October 11, 2011
Belgian researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.