Team creates a unique mouse model for the study of aplastic anaemia

August 29, 2012

Aplastic anaemia is characterised by a reduction in the number of the bone marrow cells that go on to form the different cell types present in blood (essentially red blood cells, white blood cells and platelets). In most cases, the causes of the disorder are hard to determine, but some patients have been found to have genetic alterations leading to a shortening of their telomeres (the end regions of chromosomes that protect and stabilise DNA).

A team at the Spanish National Cancer Research Centre (CNIO) led by María Blasco has successfully created a that simulates the disease in humans. And its study has allowed them to demonstrate the process linking telomere impairment with the condition. Their results are published today in the online edition of the journal Blood.

Telomeres and stem cells

Telomeres consist of a repetitive DNA sequence bound to a series of proteins, including Trf1, which guard them from degradation and/or damage. Using transgenic techniques, Blasco's team have managed to eliminate the Trf1 protein from mouse bone marrow, in order to explore its role in the tissue's function.

They found that when Trf1 is eliminated, the mice develop exactly the same symptoms as aplastic anaemia sufferers: with the corresponding pancytopenia (a reduction in the number of red and , as well as platelets). Also, the authors have shown for the first time that the absence of this protein causes a shortening of the telomeres of blood cell-producing stem cells which leads, in turn, to the progressive stress-induced death of the remaining stem cells in the tissue and, eventually, the death of the animal.

This discovery establishes the molecular bases of certain genetic variants of aplastic anaemia and opens a new line of attack via Trf1 to prevent the telomere shortening and cell death that trigger the disease. "We have generated an animal model for aplastic anaemia associated with short telomeres that may aid in the design and testing of new therapeutic strategies," confirms Blasco. These findings may also offer insights into other processes linked to telomere length, such as ageing and cancer.

Explore further: Platelet drug shows clinical benefits for severe, unresponsive aplastic anemia

Related Stories

Platelet drug shows clinical benefits for severe, unresponsive aplastic anemia

July 4, 2012
Eltrombopag, a drug that was designed to stimulate production of platelets from the bone marrow and thereby improve blood clotting, can raise blood cell levels in some people with severe aplastic anemia who have failed all ...

Progressive telomere shortening characterizes familial breast cancer patients

July 29, 2011
Telomeres, the complex structures that protect the end of chromosomes, of peripheral blood cells are significantly shorter in patients with familial breast cancer than in the general population. Results of the study carried ...

Ultra short telomeres linked to osteoarthritis

January 16, 2012
Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell ...

Telomere stress reveals insight into ageing

March 1, 2012
Scientists at Newcastle University have unlocked clues that give us a greater understanding of the ageing process. 

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.