Study suggests new treatment target for glioblastoma multiforme

August 1, 2012
Scientists led by Dr. Luis Parada have identified a potential target for future therapies against the most common, deadly kind of brain tumor in adults. Credit: UT Southwestern Medical Center

A study by UT Southwestern Medical Center researchers published online today in Nature reveals new insight into why the most common, deadly kind of brain tumor in adults recurs and identifies a potential target for future therapies.

Glioblastoma multiforme (GBM) currently is considered incurable. Despite responding to initial therapy, the cancer almost always returns. GBM is a fast-growing, that occurred in 15 percent of the estimated 22,000 Americans diagnosed with brain and nervous system tumors in 2010. The median survival rate is about 15 months, according to the .

"We identified a subset of brain tumor cells that are slower growing or remain at rest, and appear to be the source of after standard therapy in which the drug temozolomide is given to stop the tumor's growth," said Dr. Luis Parada, chairman of and director of the Kent Waldrep Center for Basic Research on and Regeneration. "Current therapy targets fast-growing tumor cells but not those responsible for new tumors. To the best of our knowledge, this is the first identification of a cancer stem-like cell in a spontaneously forming tumor inside a mammal."

Using a genetically engineered mouse model of GBM, the researchers found that the resting act more like stem cells – the non-cancerous cells the body uses to repair and replenish itself – which exist in a resting state until needed, he explained.

The existence of cancer stem cells in solid tumors remains controversial, Dr. Parada said, with some scientists in the field taking the concept for granted and others rejecting it outright. In addition, the definition of a cancer stem cell is a moving target, hence the use of the term stem-like cell in this study, he said.

"We are trying to better understand these cells. The important point is that we now are faced with technical obstacles, not conceptual ones," said Dr. Parada.

Explore further: Team reveals novel way to treat drug-resistant brain tumor cells

Related Stories

Team reveals novel way to treat drug-resistant brain tumor cells

June 1, 2012
New research from the University of Wisconsin-Madison explains why the incurable brain cancer, glioblastoma multiforme (GBM), is highly resistant to current chemotherapies.

Novel brain tumor vaccine acts like bloodhound to locate cancer cells

January 5, 2012
A national clinical trial testing the efficacy of a novel brain tumor vaccine has begun at Wake Forest Baptist Medical Center, the only facility in the Southeast to participate.

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.