New study uncovers brain's code for pronouncing vowels

August 21, 2012
Brain regions (red) containing neurons that encode vowel articulation

(Medical Xpress) -- Scientists have unraveled how our brain cells encode the pronunciation of individual vowels in speech. The discovery could lead to new technology that verbalizes the unspoken words of people paralyzed by injury or disease.

Scientists at UCLA and the Technion, Israel's Institute of Technology, have unraveled how our encode the pronunciation of individual in speech. Published in the Aug. 21 edition of Nature Communications, the discovery could lead to new technology that verbalizes the unspoken words of people paralyzed by injury or disease.

"We know that brain cells fire in a predictable way before we move our bodies," explained Dr. Itzhak Fried, a professor of neurosurgery at the David Geffen School of Medicine at UCLA. "We hypothesized that neurons would also react differently when we pronounce specific sounds. If so, we may one day be able to decode these unique patterns of activity in the brain and translate them into speech."

Fried and Technion's Ariel Tankus, formerly a in Fried's lab, followed 11 UCLA who had electrodes implanted in their brains to pinpoint the origin of their seizures. The researchers recorded neuron activity as the patients uttered one of five vowels or syllables containing the vowels.

With Technion's Shy Shoham, the team studied how the neurons encoded vowel articulation at both the single-cell and collective level. The scientists found two areas—the superior temporal gyrus and a region in the medial frontal lobe—that housed neurons related to speech and attuned to vowels. The encoding in these sites, however, unfolded very differently.

Neurons in the superior temporal gyrus responded to all vowels, although at different rates of firing. In contrast, neurons that fired exclusively for only one or two vowels were located in the medial frontal region.

"Single in the medial frontal lobe corresponded to the encoding of specific vowels," said Fried. "The neuron would fire only when a particular vowel was spoken, but not other vowels."

At the collective level, neurons' encoding of vowels in the superior temporal gyrus reflected the anatomy that made speech possible–specifically, the tongue's position inside the mouth.

"Once we understand the neuronal code underlying speech, we can work backwards from brain-cell activity to decipher speech," said Fried. "This suggests an exciting possibility for people who are physically unable to speak. In the future, we may be able to construct neuro-prosthetic devices or brain-machine interfaces that decode a person's neuronal firing patterns and enable the person to communicate."

Explore further: Researchers identify components of speech recognition pathway in humans

Related Stories

Researchers identify components of speech recognition pathway in humans

June 22, 2011
Neuroscientists at Georgetown University Medical Center (GUMC) have defined, for the first time, three different processing stages that a human brain needs to identify sounds such as speech — and discovered that they ...

Recommended for you

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Afternoon slump in reward response

August 21, 2017
Activation of a reward-processing brain region peaks in the morning and evening and dips at 2 p.m., finds a study of healthy young men published in The Journal of Neuroscience. This finding may parallel the drop in alertness ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Aug 23, 2012
"Once we understand the neuronal code underlying speech, we can work backwards from brain-cell activity to decipher speech," said Fried.


Simplfy your quest:

"Once we understand the neuronal code underlying SOUND, we can work backwards from brain-cell activity to decipher [all] LANGUAGE," said Fried.

Doesn't that sound better?

And now your suggestion:

"This suggests an exciting possibility for people who are physically unable to speak. In the future, we may be able to construct neuro-prosthetic devices or brain-machine interfaces that decode a person's neuronal firing patterns and enable the person to communicate."

Your welcome :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.