New study uncovers brain's code for pronouncing vowels

August 21, 2012
Brain regions (red) containing neurons that encode vowel articulation

(Medical Xpress) -- Scientists have unraveled how our brain cells encode the pronunciation of individual vowels in speech. The discovery could lead to new technology that verbalizes the unspoken words of people paralyzed by injury or disease.

Scientists at UCLA and the Technion, Israel's Institute of Technology, have unraveled how our encode the pronunciation of individual in speech. Published in the Aug. 21 edition of Nature Communications, the discovery could lead to new technology that verbalizes the unspoken words of people paralyzed by injury or disease.

"We know that brain cells fire in a predictable way before we move our bodies," explained Dr. Itzhak Fried, a professor of neurosurgery at the David Geffen School of Medicine at UCLA. "We hypothesized that neurons would also react differently when we pronounce specific sounds. If so, we may one day be able to decode these unique patterns of activity in the brain and translate them into speech."

Fried and Technion's Ariel Tankus, formerly a in Fried's lab, followed 11 UCLA who had electrodes implanted in their brains to pinpoint the origin of their seizures. The researchers recorded neuron activity as the patients uttered one of five vowels or syllables containing the vowels.

With Technion's Shy Shoham, the team studied how the neurons encoded vowel articulation at both the single-cell and collective level. The scientists found two areas—the superior temporal gyrus and a region in the medial frontal lobe—that housed neurons related to speech and attuned to vowels. The encoding in these sites, however, unfolded very differently.

Neurons in the superior temporal gyrus responded to all vowels, although at different rates of firing. In contrast, neurons that fired exclusively for only one or two vowels were located in the medial frontal region.

"Single in the medial frontal lobe corresponded to the encoding of specific vowels," said Fried. "The neuron would fire only when a particular vowel was spoken, but not other vowels."

At the collective level, neurons' encoding of vowels in the superior temporal gyrus reflected the anatomy that made speech possible–specifically, the tongue's position inside the mouth.

"Once we understand the neuronal code underlying speech, we can work backwards from brain-cell activity to decipher speech," said Fried. "This suggests an exciting possibility for people who are physically unable to speak. In the future, we may be able to construct neuro-prosthetic devices or brain-machine interfaces that decode a person's neuronal firing patterns and enable the person to communicate."

Explore further: Researchers identify components of speech recognition pathway in humans

Related Stories

Researchers identify components of speech recognition pathway in humans

June 22, 2011
Neuroscientists at Georgetown University Medical Center (GUMC) have defined, for the first time, three different processing stages that a human brain needs to identify sounds such as speech — and discovered that they ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Aug 23, 2012
"Once we understand the neuronal code underlying speech, we can work backwards from brain-cell activity to decipher speech," said Fried.


Simplfy your quest:

"Once we understand the neuronal code underlying SOUND, we can work backwards from brain-cell activity to decipher [all] LANGUAGE," said Fried.

Doesn't that sound better?

And now your suggestion:

"This suggests an exciting possibility for people who are physically unable to speak. In the future, we may be able to construct neuro-prosthetic devices or brain-machine interfaces that decode a person's neuronal firing patterns and enable the person to communicate."

Your welcome :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.