Vitamin B12 deficiency: Tracking the genetic causes

August 26, 2012

Vitamin B12 is essential to human health. However, some people have inherited conditions that leave them unable to process vitamin B12. As a result they are prone to serious health problems, including developmental delay, psychosis, stroke and dementia. An international research team recently discovered a new genetic disease related to vitamin B12 deficiency by identifying a gene that is vital to the transport of vitamin into the cells of the body. This discovery will help doctors better diagnose this rare genetic disorder and open the door to new treatments. The findings are published in the journal Nature Genetics.

"We found that a second transport protein was involved in the uptake of the vitamin into the cells, thus providing evidence of another cause of hereditary ", said Dr. David Rosenblatt, one of the study's co-authors, scientist in and genomics at the Research Institute of the McGill University Health Centre (RI MUHC) and Dodd Q. Chu and Family Chair in Medical Genetics and the Chair of the Department of at McGill University. "It is also the first description of a new genetic disease associated with how vitamin B12 is handled by the body".

These results build on previous research by the same team from the RI MUHC and McGill University, with their colleagues in Switzerland, Germany and the United States. In previous work, the researchers discovered that vitamin B12 enters our cells with help from of a specific . In this study, they were working independently with two patients showing symptoms of the cblF of vitamin B12 metabolism but without an actual defect in this gene. Their work led to the discovery of a new gene, ABCD4, associated with the transport of B12 and responsible for a new disease called cblJ combined homocystinuria and methylmalonic aciduria (cblJ-Hcy-MMA).

Using next generation sequencing of the patients' genetic information, the scientists identified two mutations in the same ABCD4 gene, in both patients. "We were also able to compensate for the genetic mutation by adding an intact ABCD4 protein to the patients' cells, thus allowing the vitamin to be properly integrated into the cells," explained Dr. Matthias Baumgartner, senior author of the study and a Professor of metabolic diseases at Zurich's University Children's Hospital.

Vitamin B12, or cobalamin, is essential for healthy functioning of the human nervous system and red blood cell synthesis. Unable to produce the vitamin itself, the human body has to obtain it from animal-based foods such as milk products, eggs, red meat, chicken, fish, and shellfish – or vitamin supplements. Vitamin B12 is not found in vegetables.

"This discovery will lead to the early diagnosis of this serious genetic disorder and has given us new paths to explore treatment options. It also helps explain how vitamin B12 functions in the body, even for those without the disorder," said Dr. Rosenblatt who is the director of one of only two referral laboratories in the world for patients suspected of having this genetic inability to absorb vitamin B12. Dr. Rosenblatt points out that the study of patients with rare diseases is essential to the advancement of our knowledge of human biology.

Explore further: Low vitamin B12 levels may lead to brain shrinkage, cognitive problems

Related Stories

Low vitamin B12 levels may lead to brain shrinkage, cognitive problems

September 26, 2011
Older people with low levels of vitamin B12 in their blood may be more likely to lose brain cells and develop problems with their thinking skills, according to a study published in the September 27, 2011, print issue of Neurology, ...

A breath of fresh air for detecting vitamin B12 deficiency

June 23, 2011
Researchers have developed a new test to detect the levels of vitamin B12 using your breath, allowing for a cheaper, faster, and simpler diagnosis that could help to avoid the potentially fatal symptoms of B12 deficiency.

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.