Signal analysis techniques used to map normal neural activity

September 13, 2012 by Mark Riechers

(Medical Xpress)—Looking at a tangled mass of network cables plugged into a crowded router doesn't yield much insight into the network traffic that runs through the hardware.

Similarly, Lynn H. Matthias Professor of Electrical and Computer Engineering Barry Van Veen says that looking at the three pounds of interwoven neurons that make up the hardware of the human brain doesn't give the complete picture of the brain activity that supports and consciousness.

Working with multiple collaborators, Van Veen has applied signal analysis techniques to the electric or magnetic fields measured noninvasively at the scalp through electroencephalography (EEG) or (MEG) to develop methods for identifying network models of brain function—essentially, traffic patterns of neural activity present in the human brain.

"It's analogous to coming up with a new microscope," says Van Veen.

Having a reliable traffic map of normal brain function provides a baseline for comparison for understanding how different disorders, substances and devices affect the brain. "Now that we've got the tool ready, the opportunities to try it out on scientifically interesting questions are really blossoming," says Van Veen.

For instance, network models may provide a better blueprint for how medical devices can interface with the brain. Van Veen recently began working with biomedical engineering Associate Professor Justin Williams to apply his work toward making better brain-machine interfaces.

But the implications of network models go beyond engineering questions. The on the brain just begs for network analysis, according to Van Veen. The network model could allow researchers to see precisely which parts of the brain are altered by . It could provide insight into how short-term memory works, help explain the effects of schizophrenia and monitor treatment, help measure the depth and effectiveness of different types of anesthesia, and even help give insight into the that precedes—or prevents—a miraculous recovery from a coma.

"We're developing this tool as a significant improvement over what people have had access to before," says Van Veen. "The possibilities for using it to study different aspects of are nearly unlimited."

Explore further: People are visual detectives

Related Stories

People are visual detectives

May 24, 2011
The house keys in a kitchen drawer full of mess. Or that one small piece of paper with notes on a table laden with other papers. In a brief glance, in a tenth of a second, people can determine if an object sought is present ...

Brain activity revealed when watching a feature film

May 29, 2012
Human brain functions have been studied in the past using relatively simple stimuli, such as pictures of faces and isolated sounds or words. Researchers from Aalto University Department of Biomedical Engineering and Computational ...

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.