Breast cancer risks acquired in pregnancy may pass to next three generations

September 11, 2012

Chemicals or foods that raise estrogen levels during pregnancy may increase cancer risk in daughters, granddaughters, and even great-granddaughters, according to scientists from Virginia Tech and Georgetown University.

Pregnant rats on a diet supplemented with or with fat, which increases , produce ensuing generations of daughters that appear to be healthy, but harbor a greater than normal risk for mammary cancer, the researchers report in today's Nature Communications.

Although the findings have not yet been validated in humans, the study shows that may be passed from one generation to the next not through genetic mutations, but through "epigenetic" alterations that influence how genomic information is decoded.

The research also raises hope that people who may be especially sensitive to carcinogens can be identified and novel prevention strategies can be employed before cancer strikes.

"We have shown for the first time that altered DNA methylations modulated by specific diet in normal development are heritable and transgenerational," said Yue "Joseph" Wang, the Grant A. Dove Professor of Electrical and Computer Engineering at Virginia Tech Research Center – Arlington. "We also identified key methylation alteration sites that may be involved or responsible for increased breast cancer risk, which may serve as novel for scientists to develop novel and targeted ."

The estimates that more than 226,000 women and more than 2,000 men will develop breast cancer in 2012, and nearly 40,000 people will die of the disease.

Two thirds of breast cancers that occur in families have no known , according to Leena Hilakivi-Clarke, a professor of oncology at Georgetown Lombardi Comprehensive Cancer Center. The study shows what may be underlying the cancer are not , but inherited effects of maternal intake of high-fat diets and exposure to excess estrogen during pregnancy.

"It is becoming clear that the process of epigenetic signaling—which genes are expressed and which genes are silenced—is being affected by a mother's hormonal environment during pregnancy," said Hilakivi-Clarke, who has studied the effects of maternal diet on offspring in animals and humans for more than 20 years. "The early studies indicate in a normal pregnancy a woman may have more than 20 different estrogen levels, and the highest and the lowest all result in a healthy baby. The challenge has been to understand how something in fetal development can affect breast cancer risk more than 50 years later."

The study was led by Sonia de Assis, a postdoctoral researcher in Hilakivi-Clarke's laboratory at the Georgetown Lombardi Comprehensive Cancer Center at Georgetown University Medical Center.

Virginia Tech researchers developed mathematical models and machine-learning techniques to analyze the changes in DNA methylation status in the descending daughters to understand how increased is transmitted without genetic mutation.

DNA methylation is a key process in normal development, allowing cells with the same genome to perform different functions by adding chemical groups to DNA to turn some genes on and some genes off.

Wang's group found that the descendants with increased risk had several hundred common DNA regions that were methylated differently than in a control group, providing statistically convincing evidence that can be transmitted via epigenetic means.

"Ultimately, it may be possible to undo or prevent this harmful methylation and decrease the risk of ." Wang said. "A next step will be to study the timing of the intervention and the impacts of the methylation as it occurs in the early, middle or end of the pregnancy. The promising news is pharmacologic or other interventions may be able to reverse the harmful exposure."

Explore further: DNA methylation level is marker of breast cancer risk

Related Stories

DNA methylation level is marker of breast cancer risk

May 11, 2012
(HealthDay) -- Women with high levels of white blood cell (WBC) DNA methylation at the ATM loci have a significantly increased risk of breast cancer, regardless of family history or menopausal status, according a study published ...

Study links breast cancer resistance with timing of soy consumption

April 2, 2012
Studies exploring the relationship between soy consumption and breast cancer have been mixed, but new research introduces a new thought: Could women with breast cancer who began eating soy as an adult develop a tumor more ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.