Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012, Lund University

(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result of access to human insulin-producing cells from deceased donors and by not only studying one gene variant, but many genes and how they influence the level of the gene in pancreatic islets and their effect on insulin secretion and glucose control of the donor.

"With this approach, we can explain 25 per cent of variations in . Previously, the best studies have explained less than three per cent", says Leif Groop from Lund University Diabetes Centre, the principal author of the study, which has been published in the journal .

The findings of the study provide greater insight into why, in cases of type 2 diabetes, the insulin-producing beta cells cease to be able to perform their function of producing sufficient insulin to keep blood sugar levels under control.

"We have linked different gene variants to their effect on donated human beta cells and have compared cells from non-diabetics and diabetics", says Professor Groop.

The research team had access to cells from 63 donors, nine of whom had had type 2 diabetes.

The starting point for the work was the 47 known gene variants that have a statistical link to diabetes.

"We used them as 'bait' to find new signal paths and chains of events where the 47 variants work together with other genes. We have to map patterns because a single gene rarely acts on its own", explains Leif Groop.

Various criteria were used to sift out the 20 strongest gene variants. The criteria included a difference between beta cells from healthy individuals and diabetics and a link to insulin secretion and blood sugar levels. The majority of the 20 variants identified were not among the 47 known risk genes.

The central aim of the study is to understand why certain gene variants raise the risk of diabetes.

"By taking a new and more holistic approach, we have gone a step further than previous projects and succeeded in linking together gene variants and their signal paths in human that cause reduced insulin secretion. The next step is to look in more detail at the way in which the strongest genes affect ", says Leif Groop.

Explore further: Molecular link between diabetes and cancer described

More information: Article: 'A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets', Published in: Cell Metabolism

Related Stories

Molecular link between diabetes and cancer described

November 15, 2011
Developing type 2 diabetes is a lengthy process. An early sign that it has begun is high levels of insulin in the blood. As long as the insulin-producing beta cells are able to compensate for the increased demand, for example ...

Insulin signaling is distorted in pancreases of Type 2 diabetics

December 13, 2011
Insulin signaling is altered in the pancreas, a new study shows for the first time in humans. The errant signals disrupt both the number and quality of beta cells — the cells that produce insulin.

Decade of effort yields diabetes susceptibility gene: Tomosyn-2 regulates insulin secretion

October 6, 2011
Ten years of meticulous mouse breeding, screening, and record-keeping have finally paid off for Alan Attie and his lab members.

Why resist insulin? Finding genes associated with insulin resistance

June 11, 2012
(Medical Xpress) -- Researchers have uncovered six genetic regions that appear to affect resistance to the effects of insulin, which is important in many cases of type 2 diabetes. Previously, only two regions had been described.

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.