Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012

(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result of access to human insulin-producing cells from deceased donors and by not only studying one gene variant, but many genes and how they influence the level of the gene in pancreatic islets and their effect on insulin secretion and glucose control of the donor.

"With this approach, we can explain 25 per cent of variations in . Previously, the best studies have explained less than three per cent", says Leif Groop from Lund University Diabetes Centre, the principal author of the study, which has been published in the journal .

The findings of the study provide greater insight into why, in cases of type 2 diabetes, the insulin-producing beta cells cease to be able to perform their function of producing sufficient insulin to keep blood sugar levels under control.

"We have linked different gene variants to their effect on donated human beta cells and have compared cells from non-diabetics and diabetics", says Professor Groop.

The research team had access to cells from 63 donors, nine of whom had had type 2 diabetes.

The starting point for the work was the 47 known gene variants that have a statistical link to diabetes.

"We used them as 'bait' to find new signal paths and chains of events where the 47 variants work together with other genes. We have to map patterns because a single gene rarely acts on its own", explains Leif Groop.

Various criteria were used to sift out the 20 strongest gene variants. The criteria included a difference between beta cells from healthy individuals and diabetics and a link to insulin secretion and blood sugar levels. The majority of the 20 variants identified were not among the 47 known risk genes.

The central aim of the study is to understand why certain gene variants raise the risk of diabetes.

"By taking a new and more holistic approach, we have gone a step further than previous projects and succeeded in linking together gene variants and their signal paths in human that cause reduced insulin secretion. The next step is to look in more detail at the way in which the strongest genes affect ", says Leif Groop.

Explore further: Molecular link between diabetes and cancer described

More information: Article: 'A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets', Published in: Cell Metabolism

Related Stories

Molecular link between diabetes and cancer described

November 15, 2011
Developing type 2 diabetes is a lengthy process. An early sign that it has begun is high levels of insulin in the blood. As long as the insulin-producing beta cells are able to compensate for the increased demand, for example ...

Insulin signaling is distorted in pancreases of Type 2 diabetics

December 13, 2011
Insulin signaling is altered in the pancreas, a new study shows for the first time in humans. The errant signals disrupt both the number and quality of beta cells — the cells that produce insulin.

Decade of effort yields diabetes susceptibility gene: Tomosyn-2 regulates insulin secretion

October 6, 2011
Ten years of meticulous mouse breeding, screening, and record-keeping have finally paid off for Alan Attie and his lab members.

Why resist insulin? Finding genes associated with insulin resistance

June 11, 2012
(Medical Xpress) -- Researchers have uncovered six genetic regions that appear to affect resistance to the effects of insulin, which is important in many cases of type 2 diabetes. Previously, only two regions had been described.

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.