Researchers closer to understanding actions of cells involved in atherosclerosis

September 10, 2012

Researchers at St. Michael's Hospital are one step closer to understanding why plaque bursts in coronary arteries and causes heart attacks.

The clue might be something called microRNA-145. MicroRNAs are short chains of bossy molecules that scientists are increasingly coming to realize control a wide variety of biological processes.

Dr. Subodh Verma, a cardiac surgeon at St. Michael's, published a paper in the journal Circulation today, describing for the first time how microRNA-145 gene therapy can drastically reduce the severity and progression of atherosclerosis in mice.

In addition this approach appeared to make the more stable and less prone to burst.

Atherosclerosis, commonly called hardening of the arteries, is a condition in which fat, cholesterol and other substances build up in the walls of arteries and form hard structures called plaques. It is the leading cause of death in Canada.

Dr. Verma said most heart attacks occur when plaques rupture like a broken eggshell and release their contents into the artery. Researchers are therefore looking for ways to reduce the size of plaques and make them more stable.

One of the key questions is what causes the outer layer of the plaque to finally burst – a layer of known as the fibrous cap. These cells undergo "phenotypic transformation" in response to various stressful environments and , making them more likely to rupture and cause heart attacks.

MicroRNA-145 is one of the factors that appear to play a critical role in preventing the transformation of into rupture-prone cells.

In atherosclerosis-prone animals, microRNA-145-based gene therapy reduced the plaque size by approximately 50 per cent and increased the collagen content of the plaque and fibrous cap area by 40 to 50 per cent, indicating that this therapy can reduce and also make it less prone to rupture, the inciting event of heart attacks.

The researchers also found that in human atherosclerotic plaques, the amount of microRNA-145 was reduced compared to normal arteries that were free of plaque, providing supporting human insights to the animal study.

"Atherosclerosis continues to be the number one killer in modern societies and finding new ways to treat this problem are needed," said Dr. Verma.

Dr. Fina Lovren, a senior research associate at St Michael's Hospital, carried out the experimental work on this project under the direction of Dr. Verma.

Explore further: Atherosclerotic plaques' downstream spread linked to low shear stress

Related Stories

Atherosclerotic plaques' downstream spread linked to low shear stress

November 15, 2011
In human coronary arteries, atherosclerotic plaques tend to spread downstream because of the changes in blood flow patterns the plaque causes, researchers have found.

Researchers discover new culprit in atherosclerosis

January 9, 2012
A new study by NYU Langone Medical Center researchers identified a new culprit that leads to atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque and narrows arteries. The research, published ...

MRIs could become powerful tools for monitoring cholesteral therapy

October 14, 2011
MRI scanning could become a powerful new tool for assessing how well cholesterol drugs are working, according to Loyola University Health System cardiologist Binh An P. Phan, MD.

Recommended for you

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

Blood cancer gene could be key to preventing heart failure

October 16, 2017
A new study, published today in Circulation, shows that the gene Runx1 increases in damaged heart muscle after a heart attack. An international collaboration led by researchers from the University of Glasgow, found that mice ...

Mitochondrial DNA could predict risk for sudden cardiac death, heart disease

October 11, 2017
Johns Hopkins researchers report that the level, or "copy number," of mitochondrial DNA—genetic information stored not in a cell's nucleus but in the body's energy-creating mitochondria—is a novel and distinct biomarker ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.