New collaboration to develop treatments for liver disease

September 7, 2012

A new collaboration based at the University of Cambridge will aim to discover and develop new medicines to treat liver disease.

The partnership, between the University and global pharmaceutical company GlaxoSmithKline (GSK), will build upon the work of researchers who have identified a that plays a major role in the life-threatening liver disease that develops in a population of patients with a particular .

Alpha-1 antitrypsin (A1AT) deficiency is one of the most common genetic disorders in the UK, affecting approximately one in 2,000 people. The A1AT protein is produced mainly in the liver and circulates to the lungs, where it serves a protective function against enzymes which can break down .

In patients with A1AT deficiency, the protein cannot circulate freely and accumulates in the liver, leading to potentially life-threatening liver conditions including neonatal hepatitis, and hepatocellular carcinoma. Additionally, without A1AT circulating to the lungs, lung tissue can break down, predisposing patients to early onset emphysema. Currently, the only available treatments are for cirrhosis and protein replacement therapy for emphysema.

The mechanism that underlies protein accumulation in the livers of individuals with A1AT deficiency has been defined by the team led by Professor David Lomas in the University's Cambridge Institute for Medical Research (CIMR). The collaboration with GSK will combine Professor Lomas' long-term research with GSK's expertise in drug discovery and development in order to develop new therapeutics. Work on the project will be carried out both at GSK and at the CIMR.

"Currently, the only option for patients with as a result of alpha-1 antitrypsin deficiency is transplantation," said Professor Lomas. "This partnership brings together our collective expertise in biology and drug discovery to tackle an unmet medical need and by teaming up with GSK, we have a great opportunity to turn our research into effective treatments."

This alliance is part of GSK's Discovery Partnerships with Academia (DPAc) initiative, designed to bring together the complementary skill sets of GSK and individual academic groups in the search for . Dr Pearl Huang, who leads GSK's Global DPAc, said, "Through this collaboration, we'll be able to combine the substantial knowledge and insight of the Cambridge University scientists working in this field with GSK's drug discovery expertise. By combining our strengths in this way and creating an integrated partnership we will have in place a strong framework for discovering new medicines for patients."

Dr Emma Barker of Cambridge Enterprise, the University's commercialisation group said: "This is a great example of translating academic research. We are delighted to be involved with GlaxoSmithKline's DPAc alliance with the goal of developing & commercialising medicines to treat a clear unmet medical need."

Under the terms of the agreement, the University and Cambridge Enterprise will receive success-based financial support from GSK linked to reaching agreed milestones, as well as an undisclosed upfront payment and royalties on sales from any product that is successfully commercialised out of the collaboration.

Explore further: 'Bird brains' are smart on Alzheimer's

Related Stories

'Bird brains' are smart on Alzheimer's

April 18, 2011
(PhysOrg.com) -- Tel Aviv University research says our feathered friends may hold the key to a treatment for brain-related diseases

British drugs firm GSK settles US drug disputes for $3.0 bln

November 3, 2011
GlaxoSmithKline said on Thursday it had agreed to pay $3.0 billion (2.2 billion euros) to settle long-running disputes with the US government over how the British pharmaceuticals group marketed and developed drugs.

GlaxoSmithKline reports return to profit in second quarter

July 26, 2011
British drugmaker GlaxoSmithKline posted net profit of more than £1.1 billion in the second quarter on Tuesday following a loss during the equivalent three-month period in 2010.

New gene therapy methods accurately correct mutation in patient's stem cells

October 12, 2011
For the first time, scientists have cleanly corrected a human gene mutation in a patient's stem cells. The result, reported in Nature on Wednesday 12 October, brings the possibility of patient-specific therapies closer to ...

Recommended for you

Four simple tests could help GPs spot pneumonia and reduce unnecessary antibiotics

November 23, 2017
Testing for fever, high pulse rate, crackly breath sounds, and low oxygen levels could be key to helping GPs distinguish pneumonia from less serious infections, according to a large study published in the European Respiratory ...

New approach to tracking how deadly 'superbugs' travel could slow their spread

November 22, 2017
Killer bacteria - ones that have out-evolved our best antibiotics—may not go away anytime soon. But a new approach to tracking their spread could eventually give us a fighting chance to keep their death toll down.

Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017
Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier ...

Metabolites altered in chronic kidney disease

November 22, 2017
Chronic kidney disease (CKD) affects 1 in 7 people in the United States, according to the U.S. National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK). These individuals have a very high risk of cardiovascular ...

Alcohol consumption and metabolic factors act together to increase the risk of severe liver disease

November 22, 2017
A new study provides insights into the interaction between alcohol consumption and metabolic factors in predicting severe liver disease in the general population. The findings, which are published in Hepatology, indicate ...

Rainfall can indicate that mosquito-borne epidemics will occur weeks later

November 22, 2017
A new study demonstrates that outbreaks of mosquito-borne viruses Zika and Chikungunya generally occur about three weeks after heavy rainfall.Researchers also found that Chikungunya will predominate over Zika when both circulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.