Study adds to efforts to find more effective anti-inflammatory drugs

September 27, 2012

Researchers have discovered a previously unknown function for a protein that could add to the expanding arsenal of potential new drugs for battling inflammation and tissue fibrosis in a number of disease processes.

Scientists from Cincinnati Children's Hospital Medical Center report Sept. 27 in Developmental Cell that, a protein called TRPC6 mediates a molecular pathway critical to the body's repair processes following various forms of injury caused by disease.

After injury – such as that caused by a heart attack – the TRPC6-controlled pathway prompts cells called fibroblasts to change into myofibroblasts, according to the study.

Myofibroblasts secrete a substance called extracellular matrix, an important building block needed for wound healing and tissue remodeling, which includes inflammation and scarring.

"Our study suggests that a TRPC inhibitor could be a good anti-fibrotic or anti- in , muscular dystrophy, and other diseases where becomes a problem," said Jeffery Molkentin, PhD, principal investigator and a scientist at the Cincinnati Children's Heart Institute and Howard Hughes Medical Institute. "As well, activation of the TRPC pathway with an agonist compound could be used in select situations to enhance wound healing."

Although the body needs a certain amount of inflammation and scarring to heal and return to normal function, in the process can get stuck in the "on" mode. This can lead to fibrosis (the buildup of excess connective tissues) and cause serious . Effectively and safely controlling complex inflammation processes in these situations remains an unmet clinical need, and is also the impetus behind a concerted effort in biomedical research to find new .

Researchers on the current study were encouraged by how effectively the TRPC6 pathway (TRPC6-calcineurin-NFAT) appeared to influence the transformation of fibroblasts into myofibroblasts, the secretion of extracellular matrix, wound healing and fibrosis. The authors wrote that identification of this cell repair signaling mechanism "offers an additional avenue for developing targeted intervention points in fibrotic diseases."

Calcineurin is a calcium-dependent enzyme involved in the immune system, the regulation of T-cells and also important in the function of heart cells. NFAT (nuclear factor of activated T-cells) is a family of proteins important to the immune system and the development of different tissues in the body.

Including first author Jennifer Davis, PhD. – a member of Molkentin's laboratory – the researchers started their study by running a genomic screen of molecules that regulate the transformation of fibroblast cells into myofibroblasts. The screen and subsequent laboratory tests identified TRPC6 as a promising candidate. Prior to the current study, TRPC6 had not been associated with fibrosis, although it has been linked to other cellular functions in kidneys, skin cells and hippocampal neurons of the brain.

The scientists used a virus expressing TRPC6 to infect cell cultures of mouse embryonic fibroblasts, rat cardiac fibroblasts and human dermal fibroblasts. TRPC6-infected fibroblasts fully activated the transformation to myofibroblasts, while fibroblasts lacking TRPC6 were resistant to transformation. In TRPC-6 gene deleted mice, the animals showed impaired dermal and cardiac wound healing after injury.

Molkentin said there are TRPC inhibitors in the early stage drug development pipeline, although their initial design has not targeted heart disease, inflammation or fibrosis. He added the current study may provide an impetus for widening the development focus to include these medical needs.

Explore further: Newly identified protein function protects cells during injury

Related Stories

Newly identified protein function protects cells during injury

June 7, 2012
Scientists have discovered a new function for a protein that protects cells during injury and could eventually translate into treatment for conditions ranging from cardiovascular disease to Alzheimer's.

New drug successfully halts fibrosis in animal model of liver disease

August 7, 2012
A study published in the online journal Hepatology reports a potential new NADPH oxidase (NOX) inhibitor therapy for liver fibrosis, a scarring process associated with chronic liver disease that can lead to loss of liver ...

Researchers learn how lung fibrosis begins and could be treated

June 27, 2011
An invasive cell that leads to fibrosis of the lungs may be stopped by cutting off its supply of sugar, according to researchers at Duke University Medical Center.

Recommended for you

Targeting 'broken' metabolism in immune cells reduces inflammatory disease

July 12, 2017
The team, led by researchers at Imperial College London, Queen Mary University of London and Ergon Pharmaceuticals, believes the approach could offer new hope in the treatment of inflammatory conditions like arthritis, autoimmune ...

A perturbed skin microbiome can be 'contagious' and promote inflammation, study finds

June 29, 2017
Even in healthy individuals, the skin plays host to a menagerie of bacteria, fungi and viruses. Growing scientific evidence suggests that this lively community, collectively known as the skin microbiome, serves an important ...

Inflammatory bowel disease: Scientists zoom in on genetic culprits

June 28, 2017
Scientists have closed in on specific genes responsible for Inflammatory Bowel Disease (IBD) from a list of over 600 genes that were suspects for the disease. The team from the Wellcome Trust Sanger Institute and their collaborators ...

Trials show unique stem cells a potential asthma treatment

June 28, 2017
A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma.

Researchers find piece in inflammatory disease puzzle

May 23, 2017
Inflammation is the process by which the body responds to injury or infection but when this process becomes out of control it can cause disease. Monash Biomedicine Discovery Institute (BDI) researchers, in collaboration with ...

Researchers reveal potential target for the treatment of skin inflammation in eczema and psoriasis

May 22, 2017
Superficially, psoriasis and atopic dermatitis may appear similar but their commonalities are only skin deep. Atopic dermatitis, also known as eczema, is primarily driven by an allergic reaction, while psoriasis is considered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.