Moving toward a faster, simpler Hendra virus detection system

September 20, 2012
Bottles of quantum dots used to detect Hendra.

(Medical Xpress)—CSIRO scientists, in collaboration with researchers at the Bio21 Institute at the University of Melbourne, have developed a new method which could pave the way for a portable Hendra virus biosensor.

In a paper published in the journal of Advanced Healthcare Materials, CSIRO scientists detail the outcome of the study designed to find a faster, simpler way to detect the .

Hendra virus was discovered in 1994 following an of illness in a large racing stable in the Brisbane suburb of Hendra.

Current detection methods are mainly lab-based and require samples to be shipped to state or national testing labs. CSIRO's tests have shown that this new method can deliver a positive or negative test result, under lab conditions, within 30 minutes. The hope is this can be reduced to ten minutes in the future, making portable detection a reality.

The team tested three new detection methods and found that by using quantum dots - to increase the sensitivity of current analytics methods (assays) - they were able to simplify the detection process to the point where the creation of a portable sensor is now possible.

The method uses a similar principle as a current lab technology, known as Luminex, but the combination of quantum dots and magnetic nano-particles allows the same process to be carried out on a much smaller scale. 

The video will load shortly.
Dr Paolo Falcaro, CSIRO Research Scientist, discusses the science behind the method he has developed to detect the Hendra virus.

"The early detection of viruses, such as the Hendra virus, will greatly enhance the success rate of any biosecurity counter measure," Dr Paolo Falcaro, CSIRO Research Scientist and leader of the joint research team, said.

"Further optimisation of the system is required, but this study is a proof-of-concept of the possibility to implement this method in a portable Hendra virus sensor that could be used at the point of care. The most exciting aspect to this technology is it could be used to detect any other virus by simply targeting the virus with the corresponding antibody."

and magnetic particles were chosen to simplify the reaction required to detect the virus. The works by targeting the and its antibody. If there is a match, the sensor delivers a positive result. 

Professor Paul Mulvaney, of the Bio21 Institute at the University of Melbourne, said: "This is the first application of these fluorescent nanocrystals developed at the University of Melbourne for virus detection and an important example of how the University of Melbourne-CSIRO partnership can help us focus basic science onto important health challenges. Getting this test into a microfluidics platform will enable us to develop a generic approach to pathogen detection in the field."

Explore further: Griffith University tackles deadly Hendra virus

Related Stories

Griffith University tackles deadly Hendra virus

June 4, 2012
Australian medical researchers are on the brink of an effective human treatment for the deadly Hendra virus, and potentially the closely related Nipah virus, which has killed more than two hundred people in South East Asia.

New bat virus could hold key to Hendra virus

August 2, 2012
Australian scientists have discovered a new virus in bats that could help shed light on how Hendra and Nipah viruses cause disease and death in animals and humans. The new virus - named 'Cedar' after the Queensland location ...

Vaccine protects from deadly Hendra virus

May 17, 2011
(Medical Xpress) -- CSIRO scientists have shown that a new experimental vaccine helps to protect horses against the deadly Hendra virus.

Killer Australian virus outbreak claims ninth horse

July 14, 2011
A horse was put down in Australia after contracting the deadly Hendra virus -- the ninth animal to die in an outbreak which has exposed almost 50 people in two states.

Recommended for you

Anti-malaria drug shows promise as Zika virus treatment

November 17, 2017
A new collaborative study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) and UC San Diego School of Medicine has found that a medication used to prevent and treat malaria may also be effective ...

Decrease in sunshine, increase in Rickets

November 17, 2017
A University of Toronto student and professor have teamed up to discover that Britain's increasing cloudiness during the summer could be an important reason for the mysterious increase in Rickets among British children over ...

Scientists identify biomarkers that indicate likelihood of survival in infected patients

November 17, 2017
Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease.

Research team unlocks secrets of Ebola

November 16, 2017
In a comprehensive and complex molecular study of blood samples from Ebola patients in Sierra Leone, published today (Nov. 16, 2017) in Cell Host and Microbe, a scientific team led by the University of Wisconsin-Madison has ...

Study raises possibility of naturally acquired immunity against Zika virus

November 16, 2017
Birth defects in babies born infected with Zika virus remain a major health concern. Now, scientists suggest the possibility that some women in high-risk Zika regions may already be protected and not know it.

A structural clue to attacking malaria's 'Achilles heel'

November 16, 2017
Researchers from The Scripps Research Institute (TSRI) and PATH's Malaria Vaccine Initiative (MVI) have shed light on how the human immune system recognizes the malaria parasite though investigation of antibodies generated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.