Lack of oxygen in cancer cells leads to growth and metastasis

September 13, 2012 by Garth Sundem
CD24 is a rational target in hypoxic cancers. Image: Flickr/emiliokuffer

(Medical Xpress)—It seems as if a tumor deprived of oxygen would shrink. However, numerous studies have shown that tumor hypoxia, in which portions of the tumor have significantly low oxygen concentrations, is in fact linked with more aggressive tumor behavior and poorer prognosis. It's as if rather than succumbing to gently hypoxic conditions, the lack of oxygen commonly created as a tumor outgrows its blood supply signals a tumor to grow and metastasize in search of new oxygen sources – for example, hypoxic bladder cancers are likely to metastasize to the lungs, which is frequently deadly.

A University of Colorado Cancer Center study recently published in the journal details a mechanism by which these create , with possible treatment implications for cancers including breast, ovarian, colorectal, pancreatic, prostate, bladder and other cancers.

"We've known that the protein HIF-1a is overexpressed in hypoxic tumors. And we've known that the cancer stem cell marker CD24 is overexpressed in many tumors. This study shows a link between the two – the HIF-1a of hypoxia creates the overexpression of CD24. And it's this CD24 that creates a tumor's aggressive characteristics of growth and metastasis," says Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and the paper's senior author.

Outgrowing the blood supply leads to , which leads to overexpression of HIF-1a, which signals the production of CD24, which makes tumors grow and metastasize. In addition to aggression, CD24 has also been shown to confer resistance to chemotherapy, allowing this small population of cells to regrow the tumor once chemotherapy ends, leading to relapse and disease progression.

"Now imagine we target CD24," Theodorescu says. "Either by removing a cell's ability to make CD24 or by killing cells marked by this protein, it's likely we could disarm this most dangerous population of cells."

Theodorescu and colleagues showed this by adjusting levels of HIF-1a and CD24 in cancer cell samples and animal models. With HIF-1a low and yet CD24 artificially high, cells retained the ability to grow and metastasize. With CD24 low and yet HIF-1a artificially high, cell survival and proliferation decreased.

"It seems CD24 overexpression in hypoxic cells drives growth and metastasis in these hypoxic tumors," Theodorescu says. "Now we have a rational target: for these hypoxic tumors."

Explore further: A combination of TH-302 and radiation reduced human pancreatic tumor growth in hypoxic xenografts

More information: cancerres.aacrjournals.org/con … CAN-11-3666.abstract

Related Stories

A combination of TH-302 and radiation reduced human pancreatic tumor growth in hypoxic xenografts

June 19, 2012
A combination of the prodrug TH-302 and radiation may provide an effective treatment strategy for pancreatic cancer, according to preclinical results presented at the American Association for Cancer Research's Pancreatic ...

Recommended for you

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Ruggy
not rated yet Sep 24, 2012
Dr. Otto Warburg was awarded the Nobel prize in 1931 for his discovery that cancer is caused by weakened cell respiration due to lack of oxygen at the cellular level, and proving cancer thrives in anaerobic (without oxygen), or acidic, conditions. In other words, the main cause for cancer is acidity of the human body.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.