A mother's nutrition—before pregnancy—may alter the function of her children's genes

September 20, 2012

Everyone knows that what mom eats when pregnant makes a huge difference in the health of her child. Now, new research in mice suggests that what she ate before pregnancy might be important too. According to a new research report published online in The FASEB Journal, what a group of female mice ate—before pregnancy—chemically altered their DNA and these changes were passed to her offspring. These DNA alterations, called "epigenetic" changes, drastically affected the pups' metabolism of many essential fatty acids. These results could have a profound impact on future research for diabetes, obesity, cancer, and immune disorders.

"As parents, we have to understand better that our responsibilities to our children are not only of a social, economical, or educational nature, but that our own biological status can contribute to the fate of our children, and this effect can be long-lasting," said Mihai Niculescu, M.D., Ph.D., study author from Nutrition Research Institute at the University of North Carolina at Chapel Hill, in Chapel Hill, N.C. "My hope is that, along with many other scientists, we will reveal this tight biological relationship between us as parents, and our children, and how we can improve the lives of our children using our own biological machinery."

To make this discovery, Niculescu and colleagues split mouse females into two groups before gestation, and fed them either a control diet, or a diet deficient in alpha-linolenic acid or ALA. This was achieved by replacing the type of fats in the diet, while keeping the number of calories the same. The females were bred with mouse males kept on a . Immediately after the moms delivered the , each of these two initial groups were further split in two, so that each half of the initial groups received a flaxseed oil supplemented diet (rich in ALA), while the other halves from each group remained on the same diet. Researchers used blood and liver to look at (PUFA) levels and the DNA methylation of a gene called Fads2, which regulates PUFA metabolism. They found that in both the moms and pups, flaxseed oil induced a change in this chemical modification in the Fads2 gene. Flaxseed oil supplementation increased the methylation of this gene, which, in turn, decreased the activation of the gene in pups. However, flaxseed oil was not the only factor with impact upon Fads2 methylation in pups. Results demonstrated that regardless of the flaxseed oil intake, there was a correlation between the methylation of this gene in moms and in their pups, which suggested that pups also inherit this methylation from their moms. The pups' ability to transform PUFAs in their own livers was influenced by both the mother's dietary intake, and also by maternal Fads2 methylation status.

"New York City may be laughed at by some for banning large, sugary sodas and for encouraging a healthy diet," said Gerald Weissmann, M.D., Editor-in-Chief of The , "This report shows that future generations might not find that funny at all. This report adds to the large body of evidence that an inappropriate diet can produce changes in the function of our DNA and the DNA of our children—a process called epigenetics. As we begin understand the effects of on epigenetics, New York may go from being considered a funny 'nanny-state' to becoming appreciated as a public health visionary."

Explore further: High-fat diet during pregnancy programs child for future diabetes

More information: Mihai D. Niculescu, Daniel S. Lupu, and Corneliu N. Craciunescu. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J. doi:10.1096/fj.12-210724

Related Stories

High-fat diet during pregnancy programs child for future diabetes

May 25, 2011
A high-fat diet during pregnancy may program a woman's baby for future diabetes, even if she herself is not obese or diabetic, says a new University of Illinois study published in the Journal of Physiology.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.