A mother's nutrition—before pregnancy—may alter the function of her children's genes

September 20, 2012

Everyone knows that what mom eats when pregnant makes a huge difference in the health of her child. Now, new research in mice suggests that what she ate before pregnancy might be important too. According to a new research report published online in The FASEB Journal, what a group of female mice ate—before pregnancy—chemically altered their DNA and these changes were passed to her offspring. These DNA alterations, called "epigenetic" changes, drastically affected the pups' metabolism of many essential fatty acids. These results could have a profound impact on future research for diabetes, obesity, cancer, and immune disorders.

"As parents, we have to understand better that our responsibilities to our children are not only of a social, economical, or educational nature, but that our own biological status can contribute to the fate of our children, and this effect can be long-lasting," said Mihai Niculescu, M.D., Ph.D., study author from Nutrition Research Institute at the University of North Carolina at Chapel Hill, in Chapel Hill, N.C. "My hope is that, along with many other scientists, we will reveal this tight biological relationship between us as parents, and our children, and how we can improve the lives of our children using our own biological machinery."

To make this discovery, Niculescu and colleagues split mouse females into two groups before gestation, and fed them either a control diet, or a diet deficient in alpha-linolenic acid or ALA. This was achieved by replacing the type of fats in the diet, while keeping the number of calories the same. The females were bred with mouse males kept on a . Immediately after the moms delivered the , each of these two initial groups were further split in two, so that each half of the initial groups received a flaxseed oil supplemented diet (rich in ALA), while the other halves from each group remained on the same diet. Researchers used blood and liver to look at (PUFA) levels and the DNA methylation of a gene called Fads2, which regulates PUFA metabolism. They found that in both the moms and pups, flaxseed oil induced a change in this chemical modification in the Fads2 gene. Flaxseed oil supplementation increased the methylation of this gene, which, in turn, decreased the activation of the gene in pups. However, flaxseed oil was not the only factor with impact upon Fads2 methylation in pups. Results demonstrated that regardless of the flaxseed oil intake, there was a correlation between the methylation of this gene in moms and in their pups, which suggested that pups also inherit this methylation from their moms. The pups' ability to transform PUFAs in their own livers was influenced by both the mother's dietary intake, and also by maternal Fads2 methylation status.

"New York City may be laughed at by some for banning large, sugary sodas and for encouraging a healthy diet," said Gerald Weissmann, M.D., Editor-in-Chief of The , "This report shows that future generations might not find that funny at all. This report adds to the large body of evidence that an inappropriate diet can produce changes in the function of our DNA and the DNA of our children—a process called epigenetics. As we begin understand the effects of on epigenetics, New York may go from being considered a funny 'nanny-state' to becoming appreciated as a public health visionary."

Explore further: High-fat diet during pregnancy programs child for future diabetes

More information: Mihai D. Niculescu, Daniel S. Lupu, and Corneliu N. Craciunescu. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J. doi:10.1096/fj.12-210724

Related Stories

High-fat diet during pregnancy programs child for future diabetes

May 25, 2011
A high-fat diet during pregnancy may program a woman's baby for future diabetes, even if she herself is not obese or diabetic, says a new University of Illinois study published in the Journal of Physiology.

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.