Nutrient in eggs and meat may influence gene expression from infancy to adulthood

September 20, 2012

Just as women are advised to get plenty of folic acid around the time of conception and throughout early pregnancy, new research suggests another very similar nutrient may one day deserve a spot on the obstetrician's list of recommendations.

Consuming greater amounts of – a nutrient found in eggs and meat – during pregnancy may lower an infant's vulnerability to stress-related illnesses, such as mental health disturbances, and , like hypertension, later in life.

In an early study in The , nutrition scientists and obstetricians at Cornell University and the University of Rochester Medical Center found that higher-than-normal amounts of choline in the diet during pregnancy changed epigenetic markers – modifications on our DNA that tell our genes to switch on or off, to go gangbusters or keep a low profile – in the fetus. While epigenetic markers don't change our genes, they make a permanent imprint by dictating their fate: If a gene is not expressed – turned on – it's as if it didn't exist.

The finding became particularly exciting when researchers discovered that the affected markers were those that regulated the hypothalamic-pituitary-adrenal or HPA axis, which controls virtually all in the body, including the production of the that reflects our response to stress and regulates our metabolism, among other things.

More choline in the mother's diet led to a more stable HPA axis and consequently less cortisol in the . As with many aspects of our health, stability is a very good thing: Past research has shown that early exposure to high levels of cortisol, often a result of a mother's anxiety or depression, can increase a baby's lifelong risk of stress-related and .

"The study is important because it shows that a relatively simple nutrient can have significant effects in prenatal life, and that these effects likely continue to have a long-lasting influence on adult life," said Eva K. Pressman, M.D., study author and director of the high-risk pregnancy program at the University of Rochester Medical Center. "While our results won't change practice at this point, the idea that maternal choline intake could essentially change fetal genetic expression into adulthood is quite novel."

Pressman, who advises pregnant women every day, says choline isn't something people think a lot about because it is already present in many things we eat and there is usually no concern of choline deficiency. Though much more research has focused on folate – functionally very similar to choline and used to decrease the risk of neural tube defects like spina bifida – a few very compelling studies sparked her interest, including animal studies on the role of choline in mitigating fetal alcohol syndrome and changing outcomes in Down syndrome.

A long-time collaborator with researchers at Cornell, Pressman joined a team led by Marie Caudill, Ph.D., R.D., professor in the Division of Nutritional Sciences at Cornell, in studying 26 pregnant women in their third trimester who were assigned to take 480 mg per day, an amount slightly above the standard recommendation of 450 mg per day, or about double that amount, 930 mg per day. The choline was derived from the diet and from supplements and was consumed up until delivery.

The team found that higher maternal choline intake led to a greater amount of DNA methylation, a process in which methyl groups – one carbon atom linked to three hydrogen atoms – are added to our DNA. Choline is one of a handful of nutrients that provides methyl groups for this process. The addition of a single methyl group is all it takes to change an individual's epigenome.

Measurements of cord blood and samples from the placenta showed that increased choline, via the addition of methyl groups, altered epigenetic markers that govern cortisol-regulating genes. Higher choline lessened the expression of these genes, leading to 33 percent lower cortisol in the blood of babies whose mom's consumed 930 mg per day.

Study authors say the findings raise the exciting possibility that choline may be used therapeutically in cases where excess maternal stress from anxiety, depression or other prenatal conditions might make the fetal HPA axis more reactive and more likely to release greater-than-expected amounts of cortisol.

While more research is needed, Caudill says that her message to pregnant women would be to consume a diet that includes choline rich foods such as eggs, lean meat, beans and cruciferous vegetables like broccoli. For women who limit their consumption of animal products, which are richer sources of choline than plant foods, she adds that supplemental choline may be warranted as choline is generally absent in prenatal vitamin supplements.

"One day we might prescribe choline in the same way we prescribe folate to all ," notes Pressman, the James R. Woods Professor in the Department of Obstetrics and Gynecology. "It is cheap and has virtually no side effects at the doses provided in this study. In the future, we could use choline to do even more good than we are doing right now."

Explore further: Pioneering study shows prenatal choline may 'program' healthier babies

Related Stories

Pioneering study shows prenatal choline may 'program' healthier babies

May 3, 2012
Pregnant women may have added incentive to bulk up on broccoli and eggs now that a Cornell University study has found increased maternal intake of the nutrient choline could decrease their children's chances of developing ...

Sick from stress? Blame your mom... and epigenetics

July 31, 2012
If you're sick from stress, a new research report appearing in the August 2012 issue of The FASEB Journal suggests that what your mother ate—or didn't eat—may be part of the cause. The report shows that choline ...

Researchers strive to increase awareness of forgotten essential nutrient

August 8, 2011
A group of researchers at the University of Alberta hopes to draw attention to what has become a forgotten essential nutrient.

Recommended for you

Distinct human mutations can alter the effect of medicine

December 18, 2017
Every person has a unique DNA sequence. Now, researchers from the University of Copenhagen and the MRC Laboratory of Molecular Biology in Cambridge have tried to quantify what these differences in the genome mean in the context ...

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.