Researchers find novel predictor for MDS progression risk

September 13, 2012

Researchers at Moffitt Cancer Center and colleagues have discovered that changes in the physical characteristics of the effector memory regulatory T cell can predict the progression risk of myelodysplastic syndromes (MDS) to acute myeloid leukemia. The finding could improve prognostication for patients with MDS and better inform therapeutic decision making.

The study published in the August issue of The Journal of Immunology.

Awareness of the condition increased earlier this year when ABC's "Good Morning America" co-anchor Robin Roberts announced that she is battling MDS. Formerly known as pre-leukemia, MDS is a collection of blood disorders. One in three patients with MDS develops bone marrow failure and progresses to within the first few years after diagnosis.

MDS involves the ineffective production of in bone marrow and often leaves patients anemic and in need of frequent blood transfusions.

The disease may develop as the result of chemotherapy or radiation for cancer treatment or can be related to resulting from frequent transfusions and subsequent iron overload. Because the body has no natural means to reduce iron that accumulates from repeated transfusions, a patient's organs can become overloaded with iron, leading to , , susceptibility to infection and other complications. may be necessary.

Seeking to understand more about the development of MDS, Moffitt researchers and their colleagues investigated aspects of the immune system, particularly the role of , also known as Tregs. Tregs, said the researchers, are well-defined players in tumor immune invasion in solid tumors, but little is known about the role Tregs play in pre-malignant human diseases.

"We investigated a Treg subset called 'effector memory Tregs,' " said study senior author Pearlie K. Epling-Burnette, Pharm.D., Ph.D., senior member of Moffitt's Immunology Department. "We found that changes in the physical characteristics, or phenotypes, of Tregs in MDS suggest that they may be recently activated in a manner similar to effector memory T cells. By looking at a patient's effector memory Treg cells, we were able to identify patients at higher risk for MDS progression."

An increase in effector memory Tregs likely reflects active immune suppression and may represent the earliest biomarker indicating conversion to an immunosuppressive microenvironment, the researchers said.

The team concluded that the changes to effector memory Treg phenotype may also be a useful tool for identifying MDS patients who may respond to specific classes of drugs. This would make inclusion of a patient's Treg status into prognostic and treatment models potentially valuable for informing therapy decisions for patients with MDS.

"Our study sheds light on a unique aspect of T cells and immunity in a pre-malignant model of disease and specifically implicates the importance of changes to effector memory Tregs," concluded Epling-Burnette and her co-authors. "Our findings specifically implicate effector Treg expansion in disease progression in MDS."

Explore further: Myelodysplastic syndrome treated with deferasirox shows beneficial iron reduction

Related Stories

Myelodysplastic syndrome treated with deferasirox shows beneficial iron reduction

June 22, 2012
Researchers at Moffitt Cancer Center and colleagues at six other institutions have recently tested a treatment for patients with myelodysplastic syndrome, or MDS, a blood-related malignancy that involves the ineffective production ...

The Medical Minute: What is myelodysplastic syndrome?

June 15, 2012
Television journalist and host of "Good Morning America" Robin Roberts announced this week that she has myelodysplastic syndrome, or MDS, an uncommon blood and bone marrow disorder.

Myelodysplastic syndromes (MDS) linked to abnormal stem cells

July 2, 2012
Researchers at Albert Einstein College of Medicine of Yeshiva University have found that abnormal bone marrow stem cells drive the development of myelodysplastic syndromes (MDS), serious blood diseases that are common among ...

Researchers find regulatory T-cell clue to help prevent GVHD

October 31, 2011
Graft-versus-host disease (GVHD) is a serious risk in many kinds of cell transplants, including for stem cell transplants carried out when stem cells are partially depleted of conventional T cells, which play an important ...

Recommended for you

Drug increases speed, safety of treatment for multiple food allergies

December 11, 2017
In a randomized, controlled phase-2 clinical trial, an asthma medication increased the speed and safety of a protocol used to treat children for several food allergies at once, according to a study by researchers at the Stanford ...

Immunotherapy drug nearly eliminates severe acute graft-versus-host disease

December 9, 2017
Results from a phase 2 clinical trial, presented by Seattle Children's Research Institute at the 59th American Society of Hematology (ASH) Annual Meeting, show that the drug Abatacept (Orencia) nearly eliminated life-threatening ...

Location, location, location: Immunization delivery site matters

December 1, 2017
In vaccination, a certain subpopulation of dendritic cells is vital to triggering the body's adaptive immune system, report researchers at The Jackson Laboratory (JAX), Yale University and Astra-Zeneca.

An anti-aging protein could be targeted to rejuvenate immune cells

November 30, 2017
Anti-aging proteins have long been shown to protect against age-related diseases, such as cancer, neurodegeneration, and cardiovascular disease. A study by researchers at the Gladstone Institutes now reveals that one such ...

Scientists find key to miscarriages in blood clotting disorder

November 28, 2017
Monash University researchers have potentially shed light on why women with the rare autoimmune disorder Antiphospholipid syndrome (APS) are prone to successive pregnancy losses.

How do cells release IL-1? After three decades, now we know

November 28, 2017
Researchers at Boston Children's Hospital have identified, for the first time, the molecule that enables immune cells to release interleukin-1 (IL-1), a key part of our innate immune response to infections. Findings were ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.