Scientists reveal how natural antibiotic kills tuberculosis bacterium

September 17, 2012

A natural product secreted by a soil bacterium shows promise as a new drug to treat tuberculosis report scientists in a new study published in EMBO Molecular Medicine. A team of scientists working in Switzerland has shown how pyridomycin, a natural antibiotic produced by the bacterium Dactylosporangium fulvum, works. This promising drug candidate is active against many of the drug-resistant types of the tuberculosis bacterium that no longer respond to treatment with the front-line drug isoniazid.

"Nature and evolution have equipped some bacteria with potent defense mechanisms to protect them against other bugs that share their habitat. Screening natural products generated by these organisms is therefore a powerful way to find possible new drugs to fight infectious diseases," said Stewart Cole, lead author of the study, EMBO Member and a professor at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. "Using this approach we have shown that nature's antibiotic pyridomycin is a very selective killer of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. It is also active against mycobacteria that have developed resistance to front-line drug treatments such as isoniazid."

Tuberculosis causes up to two million deaths annually. There is a significant need for since the effectiveness of current antibiotics is compromised by the increasing prevalence of drug-resistant tuberculosis. The most effective drugs used to treat tuberculosis, for example isoniazid and rifampicin, are often no longer effective.

The researchers identified a protein, the enzyme NADH-dependent enoyl(acyl ) reductase or InhA, which is the principal target for the antibiotic. "By selecting and isolating M. tuberculosis mutants resistant to pyridomycin and sequencing their genome we have found that a single gene named inhA is responsible for resistance to this natural product," added Cole.

The gene inhA is needed to produce the InhA protein, which is already known as a target for tuberculosis drug isoniazid. It turns out that pyridomycin can bind to the same pocket on the InhA enzyme as isoniazid but at a different site and in a way that involves a different sequence of molecular events. It is these differences that give pyridomycin the ability to overcome drug-resistant strains of .

The scientists showed that in live bacteria treatment with pyridomycin leads to the depletion of mycolic acids, fatty acids that are an essential component of the bacterial cell wall.

"Our finding that pyridomycin kills Mycobacterium tuberculosis by inhibiting InhA, even in clinically isolated bacteria that are resistant to the drug isoniazid, provides a great opportunity to develop pyridomycin or a related agent for the treatment of drug-resistant tuberculosis," remarked Cole.

Explore further: Improving detection of drug-resistant tuberculosis

More information: Towards a new tuberculosis drug: Pyridomycin – Nature's isoniazid, Ruben C Hartkoorn, Claudia Sala, João Neres, Florence Pojer, Sophie J. Magnet, Raju Mukherjee, Swapna Uplekar, Stefanie Boy-Röttger, Karl-Heinz Altmann, Stewart T. Cole, EMBO Molecular Medicine. onlinelibrary.wiley.com/doi/10 … m.201201689/abstract

Related Stories

Improving detection of drug-resistant tuberculosis

May 2, 2012
(Medical Xpress) -- European researchers are developing new assays to detect drug resistant strains of Mycobacterium tuberculosis.

New TB treatment limits infection while reducing drug resistance

November 16, 2011
It's estimated that nearly one-third of the world's population -- more than two billion people -- are infected with Mycobacterium tuberculosis. According to the World Health Organization, 5 to 10 percent of infected people ...

Recommended for you

Survey of DNA fragments circulating in the blood suggests vast microbial diversity

August 23, 2017
A new survey of DNA fragments circulating in human blood suggests our bodies contain vastly more diverse microbes than anyone previously understood. What's more, the overwhelming majority of those microbes have never been ...

Scientists develop infection model for tickborne flaviviruses

August 22, 2017
National Institutes of Health (NIH) scientists have filled a research gap by developing a laboratory model to study ticks that transmit flaviviruses, such as Powassan virus. Powassan virus was implicated in the death of a ...

Zika virus stifles pregnant women's weakened immune system to harm baby, study finds

August 21, 2017
The Zika virus, linked to congenital birth defects and miscarriages, suppresses a pregnant woman's immune system, enabling the virus to spread and increasing the chances an unborn baby will be harmed, a Keck School of Medicine ...

Fatty liver can cause damage to other organs via crosstalk

August 21, 2017
Nonalcoholic fatty liver disease is increasingly common. Approximately every third adult in industrialized countries has a morbidly fatty liver. This not only increases the risk of chronic liver diseases such as liver cirrhosis ...

Novel approach to track HIV infection

August 18, 2017
Northwestern Medicine scientists have developed a novel method of tracking HIV infection, allowing the behavior of individual virions—infectious particles—to be connected to infectivity.

Faulty gene linked to obesity in adults

August 18, 2017
Groundbreaking new research linking obesity and metabolic dysfunction to a problem in the energy generators in cells has been published by researchers from the Harry Perkins Institute of Medical Research and The University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.