Improving detection of drug-resistant tuberculosis

May 2, 2012, CORDIS

(Medical Xpress) -- European researchers are developing new assays to detect drug resistant strains of Mycobacterium tuberculosis.

Early detection of drug resistance constitutes one of the priorities of (TB) control programmes. It allows initiation of the appropriate treatment in patients and also surveillance of drug resistance. Associated with this problem is the emergence of multi-drug–resistant (MDR) and extensive drug-resistant (XDR) strains of M. tuberculosis.

Detection of drug resistance has been performed in the past by so-called ‘conventional methods’ based on detection of growth of M. tuberculosis in the presence of antibiotics. Such methods are, however, time consuming and thus necessitates the development of easier, and more reliable and rapid assays.

The main objective of the EU-funded FAST-XDR-Detect project was to develop an assay for the rapid detection of drug-resistant M. tuberculosis. Project partners used a method known as rifoligotyping which involves amplification of the genomic sequence of the bacteria found in TB patients, followed by hybridisation against the wild-type sequence. This molecular assay was optimised for detection of resistance to rifampicin and isoniazid, two of the most common anti-tuberculosis antibiotics.

At the same time, efforts were made to optimise an assay that can detect antibiotic-resistant strains directly from patient sputum for the simultaneous detection of MDR and XDR . This assay is expected to reduce processing time and allow the identification of drug-resistant strains based on phenotypic criteria.

Additionally, new mutations responsible for drug resistance were sequenced and entered into an existing database with all gene mutations associated with drug resistance in TB. Researchers also sought to explore the possibility that other candidate genes could be contributing to the emergence of new forms of drug resistance.

FAST-XDR-Detect project developed assays for the rapid and sensitive detection of MDR and XDR M. tuberculosis. More effective screening methods for TB will improve the surveillance of , prompting health authorities to initiate appropriate correction measures.

Related Stories

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.