New avenues for overcoming tuberculosis drug resistance

April 27, 2010, Federation of American Societies for Experimental Biology

Tuberculosis (TB) continues to be a global health problem, in part due to the exceptional drug resistance displayed by the TB-causing agent, Mycobacterium tuberculosis. Beyond even acquired drug resistance, these bacteria are also inherently resistant to many other common antibiotics, which limits the available options in finding alternative treatments to resistant TB strains.

However, in a presentation at the American Society for Biochemistry and Molecular Biology's annual meeting, titled " in ," John Blanchard of the Albert Einstein College of Medicine will discuss his group's work at eliminating this inherent drug resistance, which may help in the battle against the emerging extensively-drug resistant TB strains. The talk will take place on Tuesday, April 27 at 9:55 am PST in Anaheim Convention Center Room 304C.

"These XDR strains are even more resilient than multi-drug resistant (MDR) strains," notes Blanchard. They are resistant to almost everything we currently have in the kitchen."

Blanchard, a professor at Albert Einstein's department of biochemistry, and his team have specifically targeted an enzyme called beta-lactamase, which can break down and disable beta-lactams, a large family of antibiotics that includes penicillin and its relatives.

"When the M. tuberculosis genome was sequenced a few years ago, the presence of this beta-lactamase enzyme was discovered," Blanchard says, "which was surprising since beta-lactams have never been systematically used to treat TB."

Perhaps just as surprising was that most scientists didn't pay much attention to the M. tuberculosis beta-lactamase discovery, but Blanchard thought it would be an attractive , considering several beta-lactamase inhibitors had been developed for other bacteria.

"If we could inactivate this inactivator enzyme, it would expose to a whole new range of antibiotics," he says.

While M. tuberculosis was resistant to most beta-lactamase inhibitors, Blanchard's group found that the drug clavulanate was effective in shutting down the TB enzyme. The combination of clavulanate with the beta-lactam meropenem could effectively sterilize laboratory cultures of TB within two weeks, including several XDR-strains.

Blanchard notes this finding was exciting since, despite such high rates of drug resistance, research into new TB drugs is not a high priority in industrialized countries (for socio-economic reasons), and thus the best short-term approach might be identifying other already FDA approved antibiotics that are effective against TB -like meropenem and clavulanate.

Blanchard is currently progressing with the next steps of the therapeutic process, which includes both detailed animal studies and setting up some small-scale trials with XDR-TB patients in developing nations.

Related Stories

Recommended for you

A multimodal intervention to reduce one of the most common healthcare-acquired infections

March 16, 2018
Surgical site infections are the most frequent health care-associated infections in developing countries. According to the World Health Organization (WHO), this type of infection can affect up to one-third of surgical patients ...

After infection, herpes lurks in nerve cells, ready to strike—New research reveals what enables the virus to do so

March 15, 2018
Once herpes simplex infects a person, the virus goes into hiding inside nerve cells, hibernating there for life, periodically waking up from its sleep to reignite infection, causing cold sores or genital lesions to recur.

New imaging approach offers unprecedented views of staph infection

March 14, 2018
Eric Skaar, PhD, MPH, marvels at the images on his computer screen—3-D molecular-level views of infection in a mouse. "I'm pretty convinced that these are the most advanced images in infection biology," said Skaar, Ernest ...

Parasitic worms need their intestinal microflora too

March 14, 2018
Scientists at The University of Manchester have cast new light on a little understood group of worm infections, which collectively afflicts 1 in 4 people, mainly children—in the developing the world.

Compound scores key win in battle against antibiotic resistance

March 14, 2018
Researchers at Oregon State University have made a key advance in the fight against drug resistance, crafting a compound that genetically neutralizes a widespread bacterial pathogen's ability to thwart antibiotics.

Helicobacter creates immune system blind spot

March 13, 2018
The gastric bacterium H. pylori colonizes the stomachs of around half the human population and can lead to the development of gastric cancer. It is usually acquired in childhood and persists life-long, despite a strong inflammatory ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.