Stem-cell-protecting drug could prevent the harmful side effects of radiation therapy

September 6, 2012

Radiation therapy is one of the most widely used cancer treatments, but it often damages normal tissue and can lead to debilitating conditions. A class of drugs known as mammalian target of rapamycin (mTOR) inhibitors can prevent radiation-induced tissue damage in mice by protecting normal stem cells that are crucial for tissue repair, according to a preclinical study published by Cell Press in the September issue of the journal Cell Stem Cell.

"We can exploit the emerging findings for the development of new preventive strategies and more effective treatment options for patients suffering this devastating disease," says senior study author J. Silvio Gutkind of the National Institute of Dental and Craniofacial Research.

In response to , cancer patients often develop a painful condition called mucositis—tissue swelling in the mouth that can leave these patients unable to eat or drink and force them to rely on opioid-strength . Radiation therapy may cause this debilitating condition by depleting normal stem cells capable of repairing damaged tissue.

In the new study, Gutkind and his team found that the mTOR inhibitor rapamycin protects stem cells taken from the mouths of healthy individuals (but not ) from radiation-induced death and DNA damage, dramatically extending the lifespan of these normal stem cells and allowing them to grow. Rapamycin exerted these protective effects by preventing the accumulation of harmful molecules called reactive . Moreover, mice that received rapamycin during did not develop mucositis.

Because rapamycin is approved by the and is currently being tested in clinical trials for the prevention and treatment of various types of cancer, the new findings could have immediate and important implications for a large proportion of cancer patients. "Mucositis prevention would have a remarkable impact on the quality of life and recovery of cancer patients and at the same time would reduce the cost of treatment," Gutkind says. "Our study provides the basis for further testing in humans, and we hope that these findings can be translated rapidly into the clinic."

Explore further: Metformin may lower risk for oral cancer development

More information: Iglesias-Bartolome et al.: "mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis." DOI:10.1016/j.stem.2012.06.007

Finkel et al.: "Relief with Rapamycin: mTOR Inhibition Protects against Radiation-Induced Mucositis"(In Translation Article)

Related Stories

Metformin may lower risk for oral cancer development

April 2, 2012
New findings published in Cancer Prevention Research, a journal of the American Association for Cancer Research, suggest that metformin may protect against oral cancer.

Radiation treatment transforms breast cancer cells into cancer stem cells

February 13, 2012
Breast cancer stem cells are thought to be the sole source of tumor recurrence and are known to be resistant to radiation therapy and don't respond well to chemotherapy.

Stem cell treatment may restore cognitive function in patients with brain cancer

July 13, 2011
Stem cell therapy may restore cognition in patients with brain cancer who experience functional learning and memory loss often associated with radiation treatment, according to a laboratory study published in Cancer Research, ...

Study reveals how cancer drug causes diabetic-like state

April 3, 2012
Scientists at Dana-Farber Cancer Institute have discovered why diabetic-like symptoms develop in some patients given rapamycin, an immune-suppressant drug that also has shown anti-cancer activity and may even slow ageing.

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.