Vision cells, not brain, to blame for colour blindness

September 21, 2012

The real culprits of colour blindness are vision cells rather than unusual wiring in the eye and brain, recent research has shown.

The discovery brings scientists a step closer to restoring full for people who are colour blind – a condition that affects close to two million Australians, says Professor Paul Martin from The and The University of Sydney.

It may also help pave the way for an answer to one of the most common causes of blindness – age-related macular degeneration (AMD), which accounts for half of the cases in Australia.

"There are millions of cones in our eyes – vision cells that pick up bright light and allow us to see colour," Prof. Martin says. "They are nicknamed red, green and blue cones because they are sensitive to different .

"We now know that in the macular region of the eye, each cone has its own 'private line' into the and the brain. Just as a painter can mix from three tubes of paint to produce a wide and vivid palette, our brain uses the 'private lines' from the three cone types to create thousands of colour sensations.

Scientists previously thought that full colour vision depends on specialised nerve wiring in the eye and brain, but animal studies show that the wiring is identical for monkeys whether they have normal or abnormal colour vision, Prof. Martin says.

"This tells us that there's nothing wrong in the brain – it's only working with the signals that it receives on the 'private lines'," he says. "So the only difference in normal and abnormal colour vision is caused by the first stage of sight, which points to faulty cones. Either they have failed to develop, or else they are picking up abnormal wavelengths.

"Now that we know faulty wiring isn't the cause, we can concentrate on fixing the cones, which are controlled by genes – and thus prone to mutation or mistakes during . There are already promising results from gene therapy as a way to restore full colour vision in colour blind monkeys."

"While we have still have some way to go, the benefits of this gene therapy – if successful – can potentially extend beyond providing complete colour vision," he says.

"If we can get these genes to work in human eyes, it means that the same approach might be possible for other visual problems – including blinding diseases such as macular degeneration."

"In macular degeneration, energy supplies to the macula can't keep up with demand. So the 'private line' system must be very energy-intensive. Gene therapy could be used to turn down the cones' energy demand, or to increase energy supply from supporting cells to cone cells," Prof. Martin says.

"Together with clinical researchers at the Save Sight Institute, we are now working hard to find out exactly how many 'private lines' there are in humans. That can point us to where energy demand is highest and we can target to the right place.

"So animal research on 'private lines' for colour has given new clues for understanding one of the most important visual diseases – macular degeneration – in humans."

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

Related Stories

Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

August 31, 2011
A new research report published in The FASEB Journal will help ophthalmologists and scientists better understand a rare genetic disease that causes increased susceptibility to blue light, night blindness, and decreased vision ...

Recommended for you

Research reveals biological mechanism of a leading cause of childhood blindness

November 16, 2017
Scientists at the Virginia Tech Carilion Research Institute (VTCRI) have revealed the pathology of cells and structures stricken by optic nerve hypoplasia, a leading cause of childhood blindness in developed nations.

Genetic treatment for blindness may soon be reality

November 11, 2017
Patients who had lost their sight to an inherited retinal disease could see well enough to navigate a maze after being treated with a new gene therapy, according to research presented today at AAO 2017, the 121st Annual Meeting ...

Study finds donor corneas can be safely preserved for longer period

November 10, 2017
Results from a large, national clinical trial show that corneal donor tissue can be safely stored for 11 days without negatively impacting the success of transplantation surgery to restore vision in people with diseases of ...

Exploring the genetics of glaucoma and retinal development

November 10, 2017
Guillermo Oliver, PhD, the Thomas D. Spies Professor of Lymphatic Metabolism, recently published two studies related to the eye, one on retinal formation and the other on the genetics behind glaucoma.

Scientists discover potential treatment to stop glaucoma in its tracks

November 6, 2017
Vision scientists at the University of California, Berkeley, and the University of Toronto have discovered that naturally occurring molecules known as lipid mediators have the potential to halt the progression of glaucoma, ...

New focus on correcting refractive vision

October 25, 2017
While doctors take delight in solving the common issue of refractive vision error by prescribing eye glasses, Flinders University researchers have found that many patients are upset with this solution and claim it affects ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.