Vision cells, not brain, to blame for colour blindness

September 21, 2012

The real culprits of colour blindness are vision cells rather than unusual wiring in the eye and brain, recent research has shown.

The discovery brings scientists a step closer to restoring full for people who are colour blind – a condition that affects close to two million Australians, says Professor Paul Martin from The and The University of Sydney.

It may also help pave the way for an answer to one of the most common causes of blindness – age-related macular degeneration (AMD), which accounts for half of the cases in Australia.

"There are millions of cones in our eyes – vision cells that pick up bright light and allow us to see colour," Prof. Martin says. "They are nicknamed red, green and blue cones because they are sensitive to different .

"We now know that in the macular region of the eye, each cone has its own 'private line' into the and the brain. Just as a painter can mix from three tubes of paint to produce a wide and vivid palette, our brain uses the 'private lines' from the three cone types to create thousands of colour sensations.

Scientists previously thought that full colour vision depends on specialised nerve wiring in the eye and brain, but animal studies show that the wiring is identical for monkeys whether they have normal or abnormal colour vision, Prof. Martin says.

"This tells us that there's nothing wrong in the brain – it's only working with the signals that it receives on the 'private lines'," he says. "So the only difference in normal and abnormal colour vision is caused by the first stage of sight, which points to faulty cones. Either they have failed to develop, or else they are picking up abnormal wavelengths.

"Now that we know faulty wiring isn't the cause, we can concentrate on fixing the cones, which are controlled by genes – and thus prone to mutation or mistakes during . There are already promising results from gene therapy as a way to restore full colour vision in colour blind monkeys."

"While we have still have some way to go, the benefits of this gene therapy – if successful – can potentially extend beyond providing complete colour vision," he says.

"If we can get these genes to work in human eyes, it means that the same approach might be possible for other visual problems – including blinding diseases such as macular degeneration."

"In macular degeneration, energy supplies to the macula can't keep up with demand. So the 'private line' system must be very energy-intensive. Gene therapy could be used to turn down the cones' energy demand, or to increase energy supply from supporting cells to cone cells," Prof. Martin says.

"Together with clinical researchers at the Save Sight Institute, we are now working hard to find out exactly how many 'private lines' there are in humans. That can point us to where energy demand is highest and we can target to the right place.

"So animal research on 'private lines' for colour has given new clues for understanding one of the most important visual diseases – macular degeneration – in humans."

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

Related Stories

Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

August 31, 2011
A new research report published in The FASEB Journal will help ophthalmologists and scientists better understand a rare genetic disease that causes increased susceptibility to blue light, night blindness, and decreased vision ...

Recommended for you

Researchers report startling glaucoma protein discovery

October 20, 2017
A discovery in a protein associated with glaucoma was so unheard of that for over two years, researchers ran it through a gauntlet of lab tests and published a new research paper on it. The tests validated what they initially ...

Curve-eye-ture: How to grow artificial corneas

October 19, 2017
Scientists at Newcastle University, UK, and the University of California have developed a new method to grow curved human corneas improving the quality and transparency - solely by controlling the behaviour of cells in a ...

Clinical study success for novel contact lens device aimed to improve glaucoma treatment

October 19, 2017
A novel contact lens device developed by University of Liverpool engineers to improve the treatment of glaucoma has been found to reliably track pressure changes in the eye and be wearable by people who took part in its first ...

Study indicates proof of concept for using a surrogate liquid biopsy to provide genetic profile of retinoblastoma tumors

October 12, 2017
Retinoblastoma is a tumor of the retina that generally affects children under 5 years of age. If not diagnosed early, retinoblastoma may result in loss of one or both eyes and can be fatal. Unlike most cancers that are diagnosed ...

Farsighted children struggle with attention, study finds

October 10, 2017
Farsighted preschoolers and kindergartners have a harder time paying attention and that could put them at risk of slipping behind in school, a new study suggests.

New drug reduces rate of progression of incurable eye disease

October 4, 2017
An international study including researchers from the Centre for Eye Research Australia (CERA) has found a way to slow the progression of dry age-related macular degeneration (AMD) - one of the most common causes of vision ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.