Vision cells, not brain, to blame for colour blindness

September 21, 2012

The real culprits of colour blindness are vision cells rather than unusual wiring in the eye and brain, recent research has shown.

The discovery brings scientists a step closer to restoring full for people who are colour blind – a condition that affects close to two million Australians, says Professor Paul Martin from The and The University of Sydney.

It may also help pave the way for an answer to one of the most common causes of blindness – age-related macular degeneration (AMD), which accounts for half of the cases in Australia.

"There are millions of cones in our eyes – vision cells that pick up bright light and allow us to see colour," Prof. Martin says. "They are nicknamed red, green and blue cones because they are sensitive to different .

"We now know that in the macular region of the eye, each cone has its own 'private line' into the and the brain. Just as a painter can mix from three tubes of paint to produce a wide and vivid palette, our brain uses the 'private lines' from the three cone types to create thousands of colour sensations.

Scientists previously thought that full colour vision depends on specialised nerve wiring in the eye and brain, but animal studies show that the wiring is identical for monkeys whether they have normal or abnormal colour vision, Prof. Martin says.

"This tells us that there's nothing wrong in the brain – it's only working with the signals that it receives on the 'private lines'," he says. "So the only difference in normal and abnormal colour vision is caused by the first stage of sight, which points to faulty cones. Either they have failed to develop, or else they are picking up abnormal wavelengths.

"Now that we know faulty wiring isn't the cause, we can concentrate on fixing the cones, which are controlled by genes – and thus prone to mutation or mistakes during . There are already promising results from gene therapy as a way to restore full colour vision in colour blind monkeys."

"While we have still have some way to go, the benefits of this gene therapy – if successful – can potentially extend beyond providing complete colour vision," he says.

"If we can get these genes to work in human eyes, it means that the same approach might be possible for other visual problems – including blinding diseases such as macular degeneration."

"In macular degeneration, energy supplies to the macula can't keep up with demand. So the 'private line' system must be very energy-intensive. Gene therapy could be used to turn down the cones' energy demand, or to increase energy supply from supporting cells to cone cells," Prof. Martin says.

"Together with clinical researchers at the Save Sight Institute, we are now working hard to find out exactly how many 'private lines' there are in humans. That can point us to where energy demand is highest and we can target to the right place.

"So animal research on 'private lines' for colour has given new clues for understanding one of the most important visual diseases – macular degeneration – in humans."

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

Related Stories

Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

August 31, 2011
A new research report published in The FASEB Journal will help ophthalmologists and scientists better understand a rare genetic disease that causes increased susceptibility to blue light, night blindness, and decreased vision ...

Recommended for you

World's blind population to soar: study

August 3, 2017
The world's blind will increase threefold from about 36 million today to 115 million in 2050 as populations expand and individuals grow ever older, researchers said Thursday.

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

Too little vitamin D may hinder recovery of injured corneas

July 24, 2017
Injury or disease in combination with too little vitamin D can be bad for the window to your eyes.

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.