Vision cells, not brain, to blame for colour blindness

September 21, 2012

The real culprits of colour blindness are vision cells rather than unusual wiring in the eye and brain, recent research has shown.

The discovery brings scientists a step closer to restoring full for people who are colour blind – a condition that affects close to two million Australians, says Professor Paul Martin from The and The University of Sydney.

It may also help pave the way for an answer to one of the most common causes of blindness – age-related macular degeneration (AMD), which accounts for half of the cases in Australia.

"There are millions of cones in our eyes – vision cells that pick up bright light and allow us to see colour," Prof. Martin says. "They are nicknamed red, green and blue cones because they are sensitive to different .

"We now know that in the macular region of the eye, each cone has its own 'private line' into the and the brain. Just as a painter can mix from three tubes of paint to produce a wide and vivid palette, our brain uses the 'private lines' from the three cone types to create thousands of colour sensations.

Scientists previously thought that full colour vision depends on specialised nerve wiring in the eye and brain, but animal studies show that the wiring is identical for monkeys whether they have normal or abnormal colour vision, Prof. Martin says.

"This tells us that there's nothing wrong in the brain – it's only working with the signals that it receives on the 'private lines'," he says. "So the only difference in normal and abnormal colour vision is caused by the first stage of sight, which points to faulty cones. Either they have failed to develop, or else they are picking up abnormal wavelengths.

"Now that we know faulty wiring isn't the cause, we can concentrate on fixing the cones, which are controlled by genes – and thus prone to mutation or mistakes during . There are already promising results from gene therapy as a way to restore full colour vision in colour blind monkeys."

"While we have still have some way to go, the benefits of this gene therapy – if successful – can potentially extend beyond providing complete colour vision," he says.

"If we can get these genes to work in human eyes, it means that the same approach might be possible for other visual problems – including blinding diseases such as macular degeneration."

"In macular degeneration, energy supplies to the macula can't keep up with demand. So the 'private line' system must be very energy-intensive. Gene therapy could be used to turn down the cones' energy demand, or to increase energy supply from supporting cells to cone cells," Prof. Martin says.

"Together with clinical researchers at the Save Sight Institute, we are now working hard to find out exactly how many 'private lines' there are in humans. That can point us to where energy demand is highest and we can target to the right place.

"So animal research on 'private lines' for colour has given new clues for understanding one of the most important visual diseases – macular degeneration – in humans."

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

Related Stories

Recommended for you

New help for that bane of middle-age: blurry close-up vision

February 28, 2017

Squinting while texting? Always losing your reading glasses? An eye implant that takes about 10 minutes to put in place is the newest in a list of surgical repairs for the blurry close-up vision that is a bane of middle age. ...

Vitamin B3 prevents glaucoma in laboratory mice

February 16, 2017

In mice genetically predisposed to glaucoma, vitamin B3 added to drinking water is effective at preventing the disease, a research team led by Jackson Laboratory Professor and Howard Hughes Medical Investigator Simon W.M. ...

GARP2 accelerates retinal degeneration in a mouse model

February 15, 2017

In the retina of the eye, rod and cone cells turn light into electrical signals, the first step toward human vision. University of Alabama at Birmingham researchers are studying rod cell proteins GARP1 and GARP2 to learn ...

Myopia cell discovered in retina

February 6, 2017

Northwestern Medicine scientists have discovered a cell in the retina that may cause myopia when it dysfunctions. The dysfunction may be linked to the amount of time a child spends indoors and away from natural light.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.