New biological pathway discovery may help scientists redesign certain diabetes drugs to reduce adverse side effects

October 9, 2012

University of Iowa team discovers new biological pathway in blood vessel cells, which may contribute to the blood pressure-lowering effects of TZD drugs used to treat Type 2 diabetes. This finding may help to develop new therapies that retain the beneficial effect of TZDs but eliminate the adverse side effects.

Many drugs work by "fixing" a particular biological pathway that's gone awry in a disease. But sometimes drugs affect other pathways too, producing undesirable side effects that can be severe enough to outweigh the drug's benefits.

Such is the case for the thiazolidinedione drugs (also known as TZDs), which are used to treat type 2 diabetes. These are highly effective in controlling and have an added benefit of in some patients. However, TZDs cause unrelated but potentially severe side effects in some patients, including heart failure, , and to a lesser degree heart attack or depending on the specific TZD. The actual risks vary depending upon a patient's specific circumstances. Nonetheless, because of increased recognition of these unwanted effects, the rate of new TZD prescriptions is on the decline.

"We wanted to discover how TZDs , so that more specific drugs might be developed that retain the beneficial effect of TZDs but eliminate the detrimental side effects," says Curt Sigmund, Ph.D., professor and head of pharmacology at the UI Carver College of Medicine, and senior author of a new study published Oct. 3 in the journal .

The TZD drugs activate a protein called PPAR-gamma. in this protein disrupt the normal function of blood vessels and cause high blood pressure in people.

Sigmund and his colleagues wanted to home in on the function of PPAR-gamma in blood vessel, so they created a genetically modified mouse where the PPAR-gamma expressed in the blood vessels was mutated. These mice developed high blood pressure.

Using these mice to study how disruption of PPAR-gamma leads to , the researchers uncovered a new biological pathway (called the Cullin-3 pathway) in blood vessels, which may be the key to the blood pressure-lowering effects of TZD drugs.

The study showed that the activity of Cullin-3 in blood vessels is important for maintaining normal blood pressure, and decreased activity of Cullin-3, through disruption of PPAR-gamma, leads to increased blood pressure.

The study results may also help explain another recent finding that mutations in Cullin-3 cause early onset hypertension in people.

Sigmund notes that early research in mice has shown that new molecules, which target PPAR-gamma in new ways, do not have the side effects of TZDs. Whether these new drugs work through the Cullin-3 pathway identified by the UI team will require additional research, he says.

"Our study has added importance because some drugs, which target Cullin-3 and other Cullin proteins, are currently being tested as chemotherapies," adds Sigmund, who also directs the Center for Functional Genomics of Hypertension. "Our findings suggest that blood pressure will have to be monitored in patients undergoing these treatments."

Explore further: Popular diabetes drugs' cardiovascular side effects explained

Related Stories

Popular diabetes drugs' cardiovascular side effects explained

May 3, 2011
Drugs known as thiazolidinediones, or TZDs for short, are widely used in diabetes treatment, but they come with a downside. The drugs have effects on the kidneys that lead to fluid retention as the volume of plasma in the ...

Diabetes drug side effects traced to fat action

July 5, 2011
For better or worse, a popular class of anti-diabetic drugs does more than lower blood sugar. One known as rosiglitazone (trade name Avandia) has been in the spotlight for its possible link to increased cardiovascular events, ...

System in brain -- target of class of diabetes drugs -- linked to weight gain

May 1, 2011
University of Cincinnati (UC) researchers have determined why a certain class of diabetes drugs leads to weight gain and have found that the molecular system involved (PPAR-γ found in the brain) is also triggered by ...

Study finds mechanism that turns white fat into energy-burning brown fat

August 2, 2012
Columbia University Medical Center (CUMC) researchers have identified a mechanism that can give energy-storing white fat some of the beneficial characteristics of energy-burning brown fat. The findings, based on studies of ...

Recommended for you

Smart mat detects early warning signs of foot ulcers

August 16, 2017
While completing his residency in anesthesiology at Massachusetts General Hospital in the mid-2000s, Jon Bloom saw his fair share of foot amputations among patients with diabetes. The culprit: infected foot ulcers.

The best place to treat type 1 diabetes might be just under your skin

August 14, 2017
A group of U of T researchers have demonstrated that the space under our skin might be an optimal location to treat type 1 diabetes (T1D).

New measure of insulin-making cells could gauge diabetes progression, treatment

August 10, 2017
Researchers at the University of Wisconsin-Madison have developed a new measurement for the volume and activity of beta cells, the source of the sugar-regulating hormone insulin.

Pioneering immunotherapy shows promise in type 1 diabetes

August 9, 2017
It may be possible to 'retrain' the immune system to slow the progression of type 1 diabetes, according to results of a clinical trial published today in the journal Science Translational Medicine.

Online team-based game helps patients with diabetes lower blood glucose

August 8, 2017
Researchers from Brigham and Women's Hospital and the Veterans Affairs Boston Healthcare System have found that an online, team-based game designed to teach patients about diabetes self-management had a sustained and meaningful ...

Oxidative stress biomarkers don't always signal diabetes risk

August 7, 2017
High levels of compounds found in the body that are commonly associated with oxidative damage may actually be a good sign for some people, according to a recent review of multiple human studies led by an epidemiologist at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.