How the body uses vitamin B to recognize bacterial infection

October 10, 2012

An Australian research team has discovered how specialised immune cells recognise products of vitamin B synthesis that are unique to bacteria and yeast, triggering the body to fight infection.

The finding opens up potential targets to improve treatments or to develop a vaccine for tuberculosis.

The study, jointly led by the University of Melbourne and Monash University and published today in the journal Nature, has revealed for the first time that the highly abundant mucosal associated invariant (MAIT cells), recognise products of synthesis from bacteria and yeast in an early step to activating the immune system.

The research revealed how by-products of bacterial vitamin synthesis, including some derived from Folic acid or and or vitamin B2, could be captured by the immune receptor MR1 thus fine-tuning the activity of MAIT cells.

Dr Lars Kjer-Nielsen from the University of Melbourne led the five year study.

"Humans are unable to make vitamin B and obtain it mostly from diet. Because bacteria can synthesise vitamin B, our immune system uses this as a point of difference to recognise infection," he said.

"Given the relative abundance of the MAIT cells lining mucosal and other surfaces, such as the , the mouth, lungs, it is quite probable that they play a protective role in many infections from thrush to tuberculosis.

"This is a significant discovery that unravels the long sought target of MAIT cells and their role in immunity to infection."

Professor James McCluskey of the Department of Microbiology and Immunology at the University of Melbourne said the discovery opened up opportunities for and other potential therapeutics.

"This is a major breakthrough in which Australian researchers have beaten many strong research teams around the world, becoming the first to unlock the mystery of what drives a key component of our immune system," he said.

Monash University's Professor Jamie Rossjohn said the findings had major implications for understanding the interplay between gut bacteria and the immune system.

"Some by-products appear to drive immunity while others dampen it," Professor Rossjohn said.

The next step is to explore whether MAIT cells might also be involved in intestinal or mucosal disorders such as inflammatory bowel disease and irritable bowel syndrome.

"This discovery now cracks open a new field in immunology and we can expect many research groups to focus their attention on this system," Professor Rossjohn said.

"The discovery also involved collaborators at Melbourne's Bio21 Molecular Science and Biotechnology Institute, Metabolomics Australia and the University of Queensland, reflecting the importance of collaboration between researchers to be globally competitive," Professor McCluskey said.

Explore further: New cell type offers new hope

Related Stories

New cell type offers new hope

June 14, 2011
(Medical Xpress) -- A team of Melbourne scientists has discovered a new type of cell in the immune system. Their findings could ultimately lead to the development of novel drugs that strengthen the immune response against ...

Unraveling the mysteries of the natural killer within us

October 24, 2011
Scientists have discovered more about the intricacies of the immune system in a breakthrough that may help combat viral infections such as HIV.

TLR1 protein drives immune response to certain food-borne illness in mice

July 10, 2012
A naturally occurring protein called TLR1 plays a critical role in protecting the body from illnesses caused by eating undercooked pork or drinking contaminated water, according to new research from the University of Southern ...

Recommended for you

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.