How the body uses vitamin B to recognize bacterial infection

October 10, 2012

An Australian research team has discovered how specialised immune cells recognise products of vitamin B synthesis that are unique to bacteria and yeast, triggering the body to fight infection.

The finding opens up potential targets to improve treatments or to develop a vaccine for tuberculosis.

The study, jointly led by the University of Melbourne and Monash University and published today in the journal Nature, has revealed for the first time that the highly abundant mucosal associated invariant (MAIT cells), recognise products of synthesis from bacteria and yeast in an early step to activating the immune system.

The research revealed how by-products of bacterial vitamin synthesis, including some derived from Folic acid or and or vitamin B2, could be captured by the immune receptor MR1 thus fine-tuning the activity of MAIT cells.

Dr Lars Kjer-Nielsen from the University of Melbourne led the five year study.

"Humans are unable to make vitamin B and obtain it mostly from diet. Because bacteria can synthesise vitamin B, our immune system uses this as a point of difference to recognise infection," he said.

"Given the relative abundance of the MAIT cells lining mucosal and other surfaces, such as the , the mouth, lungs, it is quite probable that they play a protective role in many infections from thrush to tuberculosis.

"This is a significant discovery that unravels the long sought target of MAIT cells and their role in immunity to infection."

Professor James McCluskey of the Department of Microbiology and Immunology at the University of Melbourne said the discovery opened up opportunities for and other potential therapeutics.

"This is a major breakthrough in which Australian researchers have beaten many strong research teams around the world, becoming the first to unlock the mystery of what drives a key component of our immune system," he said.

Monash University's Professor Jamie Rossjohn said the findings had major implications for understanding the interplay between gut bacteria and the immune system.

"Some by-products appear to drive immunity while others dampen it," Professor Rossjohn said.

The next step is to explore whether MAIT cells might also be involved in intestinal or mucosal disorders such as inflammatory bowel disease and irritable bowel syndrome.

"This discovery now cracks open a new field in immunology and we can expect many research groups to focus their attention on this system," Professor Rossjohn said.

"The discovery also involved collaborators at Melbourne's Bio21 Molecular Science and Biotechnology Institute, Metabolomics Australia and the University of Queensland, reflecting the importance of collaboration between researchers to be globally competitive," Professor McCluskey said.

Explore further: New cell type offers new hope

Related Stories

New cell type offers new hope

June 14, 2011
(Medical Xpress) -- A team of Melbourne scientists has discovered a new type of cell in the immune system. Their findings could ultimately lead to the development of novel drugs that strengthen the immune response against ...

Unraveling the mysteries of the natural killer within us

October 24, 2011
Scientists have discovered more about the intricacies of the immune system in a breakthrough that may help combat viral infections such as HIV.

TLR1 protein drives immune response to certain food-borne illness in mice

July 10, 2012
A naturally occurring protein called TLR1 plays a critical role in protecting the body from illnesses caused by eating undercooked pork or drinking contaminated water, according to new research from the University of Southern ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.