Fluoxetine increases aggressive behavior, affects brain development among adolescent hamsters

October 1, 2012

Fluoxetine was the first drug approved by the FDA for major depressive disorder (MDD) in children and adolescents, and to this date, it remains one of only two selective serotonin reuptake inhibitors (SSRIs) registered for treatment of MDD in children and adolescents, despite reports that indicate this class of drugs is associated with side effects, such as agitation, hostility and aggression.

SSRIs have been amongst the most widely prescribed medications in psychiatry for over a decade. While there is a wealth of information regarding their effectiveness and safety in adults, considerably less data exists regarding whether they are safe for children.

A study published in Behavioral Neuroscience by Prof. Richard Melloni of Northeastern University shows that repeated administration of a low dose of fluoxetine to adolescent hamsters dramatically increased offensive aggression and altered the development of brain areas directly associated with controlling the aggressive response. "These data show clearly that repeated exposure to fluoxetine during adolescence directly stimulates aggressive responding and alters the normal development of two important brain systems, i.e., the serotonin and vasopressin neural systems, in a fashion consistent with the expression of the highly aggressive behavioral characteristics."

For over a decade, Prof. Melloni and his team have researched the neural and behavioral consequences of illicit drugs and prescribed medications on the adolescent brain. Importantly, the data collected during the study indicates that clinically relevant doses of fluoxetine, when administered during adolescent development, can dramatically alter the wiring of brain circuits implicated in aggression control. "These data support the notion that interactions between adolescent fluoxetine and the developing vasopressin neural system might underlie fluoxetine-induced aggressive behavior and hint that serotonin, perhaps by acting on vasopressin neurons, may play a more permissive role in this response."

Related Stories

Recommended for you

Babies can learn that hard work pays off

September 21, 2017
If at first you don't succeed, try, try again. A new study from MIT reveals that babies as young as 15 months can learn to follow this advice. The researchers found that babies who watched an adult struggle at two different ...

Study links brain inflammation to suicidal thinking in depression

September 21, 2017
Patients with major depressive disorder (MDD) have increased brain levels of a marker of microglial activation, a sign of inflammation, according to a new study in Biological Psychiatry by researchers at the University of ...

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

Researchers develop new tool to assess individual's level of wisdom

September 20, 2017
Researchers at University of San Diego School of Medicine have developed a new tool called the San Diego Wisdom Scale (SD-WISE) to assess an individual's level of wisdom, based upon a conceptualization of wisdom as a trait ...

Alcohol use affects levels of cholesterol regulator through epigenetics

September 20, 2017
In an analysis of the epigenomes of people and mice, researchers at Johns Hopkins Medicine and the National Institutes of Health report that drinking alcohol may induce changes to a cholesterol-regulating gene.

Self-control may not diminish throughout the day

September 20, 2017
After a long day of work and carefully watching what you eat, you might expect your self-control to slip a little by kicking back and cracking open a bag of potato chips.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.