Immune activation in pregnant mice affects offspring, potential implications for neurodevelopmental disorders

October 26, 2012

A brief kick to the immune system of a pregnant mouse can cause persistent changes in the brains of the offspring, according to new research from the University of California, Davis, Center for Neuroscience.

The findings may help researchers better understand the causes of such as schizophrenia and autism, and could point to new ways of preventing the conditions. A paper on the work is published online in the journal Brain, Behavior and Immunity.

Kimberley McAllister, professor at the Center for Neuroscience and departments of Neurology, and , Physiology and Behavior, and her colleagues dosed with a chemical, poly (I:C), which mimics a viral infection. They then measured the levels of 23 different cytokines in the brains of the offspring after they were born.

Cytokines are immune-signaling molecules that come into play as the body mounts defenses against infections and other triggers. Cytokines also appear to play a role in normal brain development after birth.

Throughout postnatal development and into adulthood, the mice showed distinct patterns of cytokines in several . These patterns differed from the patterns seen in the offspring of untreated mice. (The researchers did not find evidence of inflammation in the animals' brains.)

As seen in earlier experiments by others, the offspring of treated mice did show changes in behavior consistent with animal models of autism and schizophrenia.

It's known that when a mother's immune system responds to a virus or other trigger, cytokines cross the into the offspring, McAllister said. Previously, this had been shown to happen only around the time of infection.

The researchers had expected to see high levels of cytokines in the brains of treated mice. They were surprised to find that, during the time of greatest after birth, the brains of treated mice had lower cytokine levels than those of untreated mice.

"We showed there are changes in immune-signaling molecules in the mother that are sustained in the offspring," McAllister said. "Remarkably, the direction of change in these proteins is opposite to what was expected."

Judy Van de Water, a professor at the UC Davis MIND Institute who studies the role of the immune system in neurodevelopmental disorders, said it was an interesting discovery that called for further investigation.

"It's clear that maternal immune responses can affect both the developing brain and immune system of offspring, but there are likely additional risk factors that predispose to such responses resulting in autism or schizophrenia," she said.

If cytokine changes are found to play a role in neurodevelopmental disorders, it might be possible to target these to restore typical brain development.

Explore further: The brains of people with schizophrenia are on 'red alert', study finds

Related Stories

The brains of people with schizophrenia are on 'red alert', study finds

August 8, 2012
New Australian research shows that the brains of people with schizophrenia may be under attack by the immune system, providing the strongest evidence to date of a link between immune function and schizophrenia.

Researchers find evidence of link between immune irregularities and autism

July 17, 2012
Scientists at the California Institute of Technology (Caltech) pioneered the study of the link between irregularities in the immune system and neurodevelopmental disorders such as autism a decade ago. Since then, studies ...

Researchers find further evidence of disturbed immune system in autism

April 17, 2012
(Medical Xpress) -- A University of Kansas Medical Center study found significantly lower levels of several cytokines, the immune system’s messengers and regulators, in the plasma of children with autism disorder (AD) ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.