Finding the origins of infant leukaemia

October 15, 2012, CORDIS
Finding the origins of infant leukaemia
Credit: Thinkstock

Leukaemia arises as a result of genetic or epigenetic alterations in blood cells, leading to an aberrant accumulation of undifferentiated blasts. Understanding the molecular pathogenesis and aetiology of infant leukaemia induced by the MLL-AF4 fusion gene was the subject of the Leukaemogenesis project.

The mixed lineage leukaemia (MLL) gene is one of the most frequently mutated genes in infant acute leukaemias, leading to fusions that involve more than 50 different partners. Detection of MLL translocations at diagnosis is a strong negative of the disease.

In infant acute lymphoblastic leukaemia (ALL), MLL-AF4 is very common and arises in utero. However, very little is known about the nature of the that becomes transformed in the embryo and the mechanisms accounting for its B cell lineage affiliation.

Although various murine models for MLL leukaemias exist, they fail to replicate many of the features of the human disease, suggesting that there are essential steps during early human development required for leukaemia onset. Seeking to address this issue, the EU Leukaemogenesis project was designed to determine the that was most vulnerable to transformation by the MLL-AF4 gene.

As a first approach, scientists explored the in vitro and in vivo developmental impact of MLL-AF4 expression on haematopoietic stem progenitor cells (HSPCs) isolated from umbilical cord blood. MLL-AF4 seemed to augment the proliferation, clonogenic potential and in vivo multilineage haematopoietic engraftment of HSPCs. However, it was not sufficient to induce leukaemogenesis on its own, indicating that either additional hits were required to develop leukaemia or these cells were the inappropriate target.

In a similar way, MLL-AF4 expression was not sufficient to transform haematopoietic cells differentiated from human (hESC). Interestingly, a reduced production of haematopoietic cells was observed concomitant with an enhanced mature endothelial cell fate, suggesting that MLL-AF4 skewed the potential of common haemato-endothelial precursors towards a pronounced endothelial cell fate.

Scientists are hopeful that the precise mechanism of MLL-AF4–mediated cell transformation would be addressed by studying induced pluripotent stem cells (iPSCs) from infant patient blasts. Nonetheless, the platform generated during the Leukaemogenesis project constitutes an important tool for studying cellular and molecular mechanisms during early embryonic development and could be further utilised for drug screening and toxicity.

Explore further: Stem cell treatment to prevent leukemia returning is a step closer, say scientists

Related Stories

Stem cell treatment to prevent leukemia returning is a step closer, say scientists

June 2, 2011
Researchers at King's College London have identified a way of eliminating leukaemic stem cells, which could lead to new treatments that may enable complete remission for leukaemia patients. An early study in mice has shown ...

Possible new approach to treating deadly leukemia in babies

April 13, 2011
A Loyola University Health System study points to a promising new approach to treating an aggressive and usually fatal leukemia in babies.

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.