Finding the origins of infant leukaemia

October 15, 2012
Finding the origins of infant leukaemia
Credit: Thinkstock

Leukaemia arises as a result of genetic or epigenetic alterations in blood cells, leading to an aberrant accumulation of undifferentiated blasts. Understanding the molecular pathogenesis and aetiology of infant leukaemia induced by the MLL-AF4 fusion gene was the subject of the Leukaemogenesis project.

The mixed lineage leukaemia (MLL) gene is one of the most frequently mutated genes in infant acute leukaemias, leading to fusions that involve more than 50 different partners. Detection of MLL translocations at diagnosis is a strong negative of the disease.

In infant acute lymphoblastic leukaemia (ALL), MLL-AF4 is very common and arises in utero. However, very little is known about the nature of the that becomes transformed in the embryo and the mechanisms accounting for its B cell lineage affiliation.

Although various murine models for MLL leukaemias exist, they fail to replicate many of the features of the human disease, suggesting that there are essential steps during early human development required for leukaemia onset. Seeking to address this issue, the EU Leukaemogenesis project was designed to determine the that was most vulnerable to transformation by the MLL-AF4 gene.

As a first approach, scientists explored the in vitro and in vivo developmental impact of MLL-AF4 expression on haematopoietic stem progenitor cells (HSPCs) isolated from umbilical cord blood. MLL-AF4 seemed to augment the proliferation, clonogenic potential and in vivo multilineage haematopoietic engraftment of HSPCs. However, it was not sufficient to induce leukaemogenesis on its own, indicating that either additional hits were required to develop leukaemia or these cells were the inappropriate target.

In a similar way, MLL-AF4 expression was not sufficient to transform haematopoietic cells differentiated from human (hESC). Interestingly, a reduced production of haematopoietic cells was observed concomitant with an enhanced mature endothelial cell fate, suggesting that MLL-AF4 skewed the potential of common haemato-endothelial precursors towards a pronounced endothelial cell fate.

Scientists are hopeful that the precise mechanism of MLL-AF4–mediated cell transformation would be addressed by studying induced pluripotent stem cells (iPSCs) from infant patient blasts. Nonetheless, the platform generated during the Leukaemogenesis project constitutes an important tool for studying cellular and molecular mechanisms during early embryonic development and could be further utilised for drug screening and toxicity.

Explore further: Stem cell treatment to prevent leukemia returning is a step closer, say scientists

Related Stories

Stem cell treatment to prevent leukemia returning is a step closer, say scientists

June 2, 2011
Researchers at King's College London have identified a way of eliminating leukaemic stem cells, which could lead to new treatments that may enable complete remission for leukaemia patients. An early study in mice has shown ...

Possible new approach to treating deadly leukemia in babies

April 13, 2011
A Loyola University Health System study points to a promising new approach to treating an aggressive and usually fatal leukemia in babies.

Recommended for you

Researchers repurpose immune-activating cytokine to fight breast cancer

December 18, 2017
The most lethal form of breast cancer could have a new treatment option, according to new research out of the Case Comprehensive Cancer Center at Case Western Reserve University School of Medicine. In the Proceedings of the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.