Genetics

Rare genetic change provides clues to pancreas development

Researchers have discovered a key clue into the development of the pancreas and brain by studying rare patients born without a pancreas. The study from the Wellcome Sanger Institute, the University of Exeter and collaborators ...

Medical research

Study reveals factors behind embryonic stem cell state

Embryonic stem cells (ESC) have the ability to self-renew, and, being pluripotent have the potential to create almost any cell type in the body. The embryonic stem cell state is established and maintained by multiple regulatory ...

Medical research

Nicotine may harm human embryos at the single-cell level

Nicotine induces widespread adverse effects on human embryonic development at the level of individual cells, researchers report February 28th in the journal Stem Cell Reports. Single-cell RNA sequencing of human embryonic ...

Medical research

Israeli company plans to make insulin injections obsolete

Modern medicine sometimes really is a miracle, with many illnesses and conditions that in the past spelled sure death now treatable and curable. Not only is medicine effective, but in recent years it's becoming more convenient, ...

Medical research

Scientists generate functional, transplantable B cells from mice

Functional B-1 cells derived from mouse embryonic stem cells are capable of long-term engraftment and secrete natural antibodies after transplantation in mice, researchers report February 7th in the journal Stem Cell Reports. ...

Obstetrics & gynaecology

Folliculin mutations disrupt embryo implantation

New information is unfolding on the genetic controls of an early turning point in pregnancy. As the tiny, dividing cell mass, the blastocyst, travels from the oviduct and lodges in the wall of the uterus, the cells must exit ...

Genetics

Kick-starting the genome in early development

After the fertilisation of an egg cell, two become one; two sets of genetic information combine to form a genome. We can think of the egg and sperm as information capsules with stored instructions for starting a new life, ...

page 1 from 23

Embryonic stem cell

Embryonic stem cells (ES cells) are stem cells derived from the inner cell mass of an early stage embryo known as a blastocyst. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells.

Embryonic Stem (ES) cells are pluripotent. This means they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes ES cells from multipotent progenitor cells found in the adult; these only form a limited number of cell types. When given no stimuli for differentiation, (i.e. when grown in vitro), ES cells maintain pluripotency through multiple cell divisions. The presence of pluripotent adult stem cells remains a subject of scientific debate; however, research has demonstrated that pluripotent stem cells can be directly generated from adult fibroblast cultures.

Because of their plasticity and potentially unlimited capacity for self-renewal, ES cell therapies have been proposed for regenerative medicine and tissue replacement after injury or disease. However Diseases treated by these non-embryonic stem cells include a number of blood and immune-system related genetic diseases, cancers, and disorders; juvenile diabetes; Parkinson's; blindness and spinal cord injuries. Besides the ethical concerns of stem cell therapy (see stem cell controversy), there is a technical problem of graft-versus-host disease associated with allogeneic stem cell transplantation. However, these problems associated with histocompatibility may be solved using autologous donor adult stem cells or via therapeutic cloning.

This text uses material from Wikipedia, licensed under CC BY-SA