Invisible tails help cancerous mRNA evade the body's censors

October 10, 2012

In innumerable spy movies, the hero or a villain imprints a key in clay in order to later make an exact copy. In the body, the clay is messenger RNA, or mRNA, which imprints a gene and transfers the plans to a ribosome, where the mRNA's code is manufactured into a protein – the shady shop where the clay imprint becomes a key.

It's the body's job to recognize and destroy cancerous clay molds in transit – any that codes for an oncogenic protein. Only, the body frequently fails and mRNA that should be killed is instead allowed to be turned into its cancer-causing protein product.

The identified the method by which cancerous mRNA evades the body's safeguards as one of the 24 most provocative questions in cancer science. And the NCI Provocative Questions Project has entrusted the search for an answer to David Bentley, PhD, investigator at the University of Colorado Cancer Center and professor in the Department of at the CU School of Medicine.

"mRNAs have a long tail of residues that won't necessarily be expressed in the protein it codes for," Bentley says. "And it was realized that many of these tails, called poly(A) tails, are mislocalized in ."

So, what difference does it make if an mRNAs extra, unexpressed tail is missing or in the wrong place? Well, "When you cut off these untranslated sequences, you can end up with runaway mRNA – when it loses those important pieces at the end, it can escape from regulatory mechanisms that can keep it under control."

The body looks for an mRNA's poly(A) tail as a signal to make a thorough examination. Without this tail, or with an unrecognizable tail, cancerous mRNAs evade scrutiny.

In addition, Bentley describes the length of an mRNA's poly(A) tail effecting its stability. A stable mRNA stays still near the and allows itself to be easily read and copied; an instable mRNA turns over rapidly and is less likely to be made into a protein. And a mRNA's poly(A) tail presents docking bays at which regulators of this stability can attach – proteins and microRNAs that land at poly(A) tails can hold an mRNA stable for expression or make it instable and unreadable.

These tails are not easy to see. In fact, they're virtually invisible to traditional cancer scientists who have been most concerned with exploring patients' genomes for the mutated genes that cause cancer – either oncogenes that are upregulated or tumor suppressor genes that are downregulated. These mutations result in changes in the sequence of proteins, the products of which are dangerous new stuff.

"But this new mechanism of corrupted poly(A) tails opens up a new way in which a gene can be activated or inactivated without a mutation. Nobody has ever looked for the positions of these tails in the past – and it wouldn't' show up by genetic sequencing," Bentley says.

In fact, the poly(A) tails are generally invisible to the traditional techniques of cancer scientists. That's why it may take Bentley's view from outside this cancer science box to discover an answer.

"I'm not actually a cancer scientist," admits Bentley. "In fact, I've never had a grant from the NCI before. It's only through the generosity of researchers at the CU Cancer Center including Ross Camidge in lung cancer and Anthony Elias in breast cancer that I've been able to frame my lab's rather unique expertise in the maturation of mRNA in terms of its potential clinical impact on cancer."

"The collegiality on this campus made this project possible," Bentley says.

In a year we'll know if this nexus of diverse scientific expertise along with more than a quarter million dollars from the NCI will result in an answer to one of cancer science's most provocative questions: how mRNA promote . The answer could provide an entirely new way to intervene in the chain of events that leads from bad genes to cancerous proteins.

Explore further: Genetic differences may cause higher rates of prostate cancer in African-American men

Related Stories

Genetic differences may cause higher rates of prostate cancer in African-American men

September 20, 2011
Genetic differences in prostate cells seem to be a root cause of the prostate cancer disparities between African-American men and white men, according to findings presented at the Fourth AACR Conference on The Science of ...

Recommended for you

A new weapon against bone metastasis? Team develops antibody to fight cancer

December 11, 2017
In the ongoing battle between cancer and modern medicine, some therapeutic agents, while effective, can bring undesirable or even dangerous side effects. "Chemo saves lives and improves survival, but it could work much better ...

Insights on how SHARPIN promotes cancer progression

December 11, 2017
Researchers at Sanford Burnham Prebys Medical Discovery (SBP) and the Technion in Israel have found a new role for the SHARPIN protein. In addition to being one of three proteins in the linear ubiquitin chain assembly complex ...

Glioblastoma survival mechanism reveals new therapeutic target

December 11, 2017
A Northwestern Medicine study, published in the journal Cancer Cell, has provided new insights into a mechanism of tumor survival in glioblastoma and demonstrated that inhibiting the process could enhance the effects of radiation ...

Liver cancer: Lipid synthesis promotes tumor formation

December 11, 2017
Lipids comprise an optimal energy source and an important cell component. Researchers from the Biozentrum of the University of Basel and from the University of Geneva have now discovered that the protein mTOR stimulates the ...

Use of chemotherapy for early stage breast cancer declines, study says

December 11, 2017
A study of nearly 3,000 women with early stage breast cancer indicates a recent, significant decline in the use of chemotherapy despite the lack of any change in national treatment recommendations or guidelines, according ...

Researchers identify epigenetic orchestrator of pancreatic cancer cells

December 11, 2017
Genentech researchers have identified an enzyme that shifts pancreatic cancer cells to a more aggressive, drug-resistant state by epigenetically modifying the cells' chromatin. The study, which will be published December ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.