Macrophage accumulation of triglycerides yields insights into atherosclerosis

October 1, 2012

A research report appearing in the Journal of Leukocyte Biology helps explain how specific immune cells, called macrophages, accumulate triglycerides to support their function. Because a characteristic finding in atherosclerosis is the accumulation of fat in macrophages in the arterial wall, understanding how macrophages accumulate triglycerides may lead to new approaches toward slowing or stopping the development of atherosclerosis.

"Activation of macrophages leads to the accumulation of triglycerides in macrophages by multiple pathways that may have beneficial effects in host defense but could contribute to the accelerated atherosclerosis that occurs in and inflammatory disease," said Kenneth R. Feingold, M.D., a researcher involved in the work from the Metabolism Section at the Veterans Affairs Medical Center in San Francisco, California. "By understanding the pathways that lead to this lipid accumulation in activated macrophages one might be able to manipulate these pathways to stimulate to improve host defense or inhibit these pathways to reduce atherosclerosis depending on the clinical circumstances."

To make this discovery, scientists conducted using a macrophage cell line, or mouse peritoneal macrophages. These cells were stimulated with various substances and the effect on macrophage glucose and fat metabolism was determined. They found that activated macrophages are more efficient at taking up glucose and use this glucose to synthesize fat. They also found that activated macrophages are more efficient at taking up fatty acids and use the to synthesize triglycerides. Finally, the breakdown of fat (triglycerides) is decreased in activated macrophages. Together these changes in macrophage metabolism lead to the accumulation of fat inside the macrophage itself. The fact that multiple pathways are altered suggests that the accumulation of fat in activated macrophages is important to the function of activated macrophages.

"Drilling down to understand exactly how triglycerides are used by our body should ultimately help us better treatments for diseases such as atherosclerosis," said John Wherry, Ph.D., Deputy Editor of the . "This report gives us important insights into how triglycerides accumulate in key involved in atherosclerosis and cardiovascular disease."

Explore further: Researchers discover new culprit in atherosclerosis

More information: Heather Parker, Mike Dragunow, Mark B. Hampton, Anthony J. Kettle, and Christine C. Winterbourn. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol October 2012, 92:841-849; doi:10.1189/jlb.1211601

Related Stories

Researchers discover new culprit in atherosclerosis

January 9, 2012
A new study by NYU Langone Medical Center researchers identified a new culprit that leads to atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque and narrows arteries. The research, published ...

New way of fighting high cholesterol upends assumptions

September 27, 2012
Atherosclerosis – the hardening of arteries that is a primary cause of cardiovascular disease and death – has long been presumed to be the fateful consequence of complicated interactions between overabundant cholesterol ...

Dendritic cell subtype protects against atherosclerosis

November 10, 2011
Atherosclerosis, commonly referred to as "hardening of the arteries," is a major risk factor for heart attack and stroke. The cause of atherosclerosis is not well understood but, for some time, chronic inflammatory immune ...

Recommended for you

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.