Mechanisms of action for green tea extract in breast cancer prevention identified

October 18, 2012

An oral green tea extract, Polyphenon E, appears to inhibit vascular endothelial growth factor and hepatocyte growth factor, both of which promote tumor cell growth, migration and invasion.

Researchers made this discovery during a secondary analysis of a phase Ib randomized, placebo-controlled study of Polyphenon E in a group of 40 women with hormone receptor-negative . Katherine D. Crew, M.D., assistant professor of medicine and epidemiology at Columbia University Medical Center in New York, N.Y., presented the data at the 11th Annual AACR International Conference on Frontiers in Cancer Prevention Research, held Oct. 16-19, 2012.

"Many have looked at epigallocatechin-3-gallate, or , which is one of the main components of green tea, and the various possible mechanisms of its action against cancer, but it is very difficult to do those same kinds of studies in humans," Crew said. "This study was too small to say for sure if green tea will prevent breast cancer, but it may move us forward in terms of understanding antitumor mechanisms."

In the primary analysis, presented at last year's Frontiers in meeting, 40 women were randomly assigned to 400 mg, 600 mg or 800 mg of Polyphenon E or to placebo twice daily for six months. During that time, researchers collected blood and urine samples from participants at baseline and at two, four and six months.

In this secondary analysis, Crew and colleagues used the blood and urine samples to examine biologic endpoints, such as , growth factors and lipid biomarkers, which might point to the mechanism of action behind . Biomarker data were available for 34 of the 40 patients.

Women assigned to the extract had an average 10-fold increase in green tea metabolites compared with placebo. In addition, they had a significant reduction in hepatocyte growth factor levels at two months compared with women assigned to placebo. However, at the four-month and six-month follow-ups, the difference was no longer statistically significant.

The researchers also identified a trend toward decreased total serum cholesterol and decreased vascular endothelial growth factor in women assigned to the extract.

According to Crew, it is still too early to recommend green tea extract to prevent breast cancer. Currently, researchers are conducting several ongoing studies to explore the use of oral extract in high-risk women for the primary prevention of breast cancer.

Explore further: Tea epigallocatechin-3-gallate inhibits cell proliferation in breast cancer patients

More information: A73 Evaluating tissue biomarker effects of an oral green tea extract, Polyphenon E, using reverse phase protein array in women with operable breast cancer. Kimberly A. Ho et al.

Abstract
Background: Numerous epidemiologic studies and experimental data support potential anti-tumor effects of green tea and its main component, epigallocatechin-3-gallate (EGCG), in breast cancer. However, there is limited data on the effects of tea catechins on breast cancer in human intervention trials. The purpose of this study is to evaluate tumor proteomic changes after short-term pre-surgical administration of an oral green tea extract, Polyphenon E (Poly E), in women with operable breast cancer using reverse phase protein array (RPPA).

Methods: This is a phase II single-arm open-label trial of oral Poly E 800 mg daily for 2-4 weeks in women with histologically-confirmed breast cancer on core biopsy who were scheduled for surgical resection. Formalin-fixed paraffin-embedded (FFPE) tumor tissue from the diagnostic core biopsy (pre-treatment) and surgical resection (post-treatment) were analyzed for expression of the Ki-67 proliferation index, estrogen receptor (ER), progesterone receptor (PR), and HER2 by immunohistochemistry (IHC). Protein was extracted for RPPA analysis of 161 proteins, including components of the PI3K/AKT and MAPK pathways. Women were matched by age, breast cancer stage, ER/PR/HER2 status, and time interval between breast biopsy and surgery to untreated historical controls. Paired t-test was used to calculate changes in protein markers before and after Poly E treatment and 2-sample t-test to compare biomarker changes in the treatment and no treatment groups. All statistical analyses were 2-sided and performed using SAS version 9.1.

Results: From Feb 2008 to Sept 2009, 25 women were enrolled and 21 were evaluable. Median age: 50 years (range, 33-71); White/Hispanic/Black (%): 44/48/7; Stage 0/I/II/III (%): 11/48/30/11; hormone receptor +/- (%): 85/15. Mean duration on Poly E was 20 days (range, 13-36). We demonstrated significant correlations between RPPA and IHC for Ki-67 (0.46, P<0.0001), ER (0.45, P=0.0017), PR (0.46, P=0.0014), and a trend for HER2 (0.28, P=0.0923). Poly E treatment did not cause a significant decrease in Ki-67 compared to untreated controls (mean absolute change, -0.5% vs. +2.6%, P=0.83). In the Poly E-treated group, the RPPA results showed significant modulation of apoptosis and PI3K/AKT pathway proteins (P<0.05). After Bonferroni correction to adjust for multiple comparisons (P<0.00031), 11 markers remained statistically significant comparing change from baseline with Poly E treatment: up-regulation of MEK1, JNK2, and p38-MAPK; down-regulation of CDK4, HER2-pY1248, MAPK-pT202-Y204, MIG-6, mTOR-pS2448, PRAS40-pT246, Src-pY416, and Scr-pY527. Compared to untreated controls, the Poly E group had significant changes from baseline in 10 proteins: up-regulation of IRS1, p38-MAPK, Notch1, and YAP; down-regulation of ERCC1, MIG-6, p90RSK-pT359-S363, PRAS40-pT246, Smad3, and Src-pY416 (P<0.05).

Conclusions: Short-term administration of Poly E did not significantly decrease proliferation in breast tumor tissue; however, our RPPA data suggests that Poly E may act on alternative signaling pathways. The changes we observed in CDK4, HER2, Src, MAPK, and JNK expression are consistent with preclinical studies of EGCG. This is one of the first human intervention trials to demonstrate the biologic effects of Poly E on growth factor signaling pathways in breast cancer.

Related Stories

Tea epigallocatechin-3-gallate inhibits cell proliferation in breast cancer patients

October 21, 2011
(Medical Xpress) -- Erxi Wu, assistant professor of pharmaceutical sciences, and Fengfei Wang, research associate of pharmaceutical sciences, co-wrote the article, "Anti-cancer activities of tea epigallocatechin-3-gallate ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.